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ABSTRACT - A new bound for quadratic metric using principal component
transform is derived in this paper. A new fast search algorithm for quadratic
metric is also proposed by storing the transformed codeword first, then the al-
gorithm is executed by using the previous vector candidate, bound for quadratic
metric and partial distortion search from the transformed input data. Exper-
imental results demonstrate that this new algorithm compared with previous
work (Pan et al., 1996a) will reduce the number of multiplications and the total
number of mathematical operations for 1,024 codewords by more than 77% and
50%.

INTRODUCTION

Vector quantization (VQ) (Gray, 1984) has widely been used in speech coding, speech recog-
nition, and image coding. One of the most serious problems in VQ is the search cost to find
a minimum distortion codeword from a given codebook. Given one codeword C; and the test
vector X in the k-dimensional space, the distortion of the squared Euclidean metric can be
expressed as follows:

E
D(X,C) =D («* =€), v
f=1
where C; = {¢},¢c?,...,cf} and X = {z%,2%,...,2%}.
Each distortion calculation requires £ multiplications and 2k — 1 additions. Therefore, it is
necessary to perform k2% multiplications, (2k — 1)2*" additions, and 2" — 1 comparisons for
encoding each input vector. The computation complexity depends on codebook size and dimen-
sions. It needs large codebook size and higher dimension for high performance in VQ encoding
and recognition systems resulting in increased computation load during codeword search.

In order to reduce the search cost, the partial distortion search (PDS) algorithm (Bei & Gray,
1985) has been proposed. The PDS is a simple and efficient method which allows early termi-
nation of the distortion calculation between an input vector and a codeword by introducing a
premature exit condition in the search process. Given the current minimum distortion,

D(X, Ct) = Drm'n, (2)

Zf i(z’ - cj')z Z Dml'ru (3)
i=1

then  D(X,C;) > D(X,C), (4)
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where s < k.
The efficiency of PDS derives from elimination of an unfinished distortion computation if its

partial accumulated distortion is larger than the current minimum distortion. This will reduce
computation to (k — s) multiplications and 2(k — s) additions at the expense of s comparisons.

computation to (£ — &) multiplications and 2( additions xpens
For speech data, the classification result of the present vector is usually the same as or close
to the classified result of the previous vector. The nearest codeword of the previous vector
can be used as the tentative match called previous vector candidate which is first proposed by
(Pan, 1988; Chen & Pan, 1989). In vector quantization of images, data are first divided into
subsequent blocks of size k = M x M. The previous vector candidate has also been applied
to image coding (fuang & Chern, 1990) by taking the advantage of high correlation between
contiguous subimages. The previous vector candidate, Criterion 1 of the triangular inequality
elimination and the partial distortion search were also applied to Manhattan (Chebyshev) metric
for V) image coding by (Nyeck et al., 1992).

The bound for Minkowski metric has been derived in the previous work (Pan et al., 1996a) as
follows: s
if Solet — P > YhP T Do, (5
i=1

k
then 5”2 = é* 2 Dmin, (6)
i=1
where s < h < kandp<n.
The improved absolute error inequality (IAEI) criterion (Pan et al., 1996b) is obtained by setting
n=2 and p=1. Hence IAEI criterion is expressed as follows:

if Zl(ﬁi-—cﬂ 2> VhDpin, (7)

i=1

%
then Z(x' — &) 2 Dinins )

=1
where s < h < k.

BOUND FOR QUADRATIC METRIC

In the previous work (Pan et al., 1996a), a bound for quadratic metric has already been derived
using triangular matrix technique. The main spirit is to split the covariance matrix to the prod-
uct of the lower triangular matrix and the upper triangular matrix so that the quadratic metric
is transformed to the Euclidean metric. A new bound for quadratic metric is also derived using
The Karhunen-Loéve transform (KLT). KLT is also called the eigenvector transform, principal
component transform and Hotelling transform. It is an optimal transform in a statistical sense
under a variety of criteria. The KLT has the following properties (Elliott and Rao, 1982):

1. It is the best vector transform in the sense of decorrelating the sequence completely in the
transform domain.

2. It packs the most energy (variance) to the low order elements.

3. It minimizes the mean squared error (MSE) between the original and reconstructed data
for any specified bandwidth reduction or data compression.

4. It minimizes the total entropy of the data sequence.
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Eigenvectors of the covariance matrix of a given sequence are the basis functions of the KLT.
Assume P and A are the eigenvector and diagonal matrix of eigenvalues, respectively. The
quadratic metric can be transformed to the Euclidean metric as follows:

D(X,C) = (X = C) WYX = Cn)

= (X = Cp)'{PAP'} " {X - Cp)

[M 0 0 07
10 X o il
=(X-C){P| 0 0 X 0 | Py Y(X =Ch)
0 0 0 A
rA 0 ¢ 017!
B 0
=(X-C{P7 |0 0 X 0 PIYX - Cy)
Lo 0 o A
[+ 0 0 0
0 £ 0 0
=(X-C){P| 0 0 L& 0 | PUX -Ch)
L0 0 0 =
Tl T[T L
Vs v/
=(X-C){P| 0 0 = 00 o 0 | PPHX ~Cn)
0 0 0 T o o0 o %x_
k .
=(X=-Co)QQ'(X - Cn)=T'U =3 _|u'|%, (9)
=1
where
\,—IA=1 0 0 0
0 A (1) 0
Q=P| 0 0 A ,
6 0 o0 A=

U=@(X - C,) and v is the element of the row matrix U.
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Apply the JIAFEI to Eq. 9 and assume the current minimum distortion

If z’:!u‘! > \/thina (11)

=1

then D(X,C;) 2 Din (12)
where s < h < k.

After the transform of quadratic metric to Eq. 9 using KLT, another hound for quadratic metric
is derived as shown in Eq. 10 to Eq. 12.

NEW CODEWORD SEARCH ON EUCLIDEAN METRIC

In the previous work (Pan et al., 1996a), the test materials consisted of two hundred words
recorded from one male speaker. The speech was sampled at a rate of 16 kHz and 13-dimensional
cepstrum coefficients with inverse variance weighting were computed over 20 ms-wide frames
with a 5 ms frame shift. A total of 20,030 analyzed frames were used in the codeword searching
experiments. A fast algorithm is implemented by using the minimum value of the maximum
dimension-distortion as the tentative match, the PDS and the IAFI, setting h to 1, 4, 9 and
13, adapting and comparing Eq. 7 for s from 1 to 13 in the previous work. Another possible
approach is to adapt s from 1 to 13 but only compare Eq. 7 at s = 1, 4, 9 and 13. As shown
in Table 1, this approach will decrease the number of comparisons as well as the total number
of operations at the expense of more additions. In terms of the total number of mathematical
operations, this approach is a little better than the minimax method but drastically reduces the
number of multiplications for 1024 codewords.

method mul.(x10%) | cmp.(x10%) | add.(x10%) | sum(x10%)
Minimaz 7,569 292,892 272.682 573,143
Minimaz_AET] 2,133 305,783 283,573 593,489
TAET Euclidean 1,671 299,002 278,865 579,538
New TAEI Fuclidean 1,671 291,360 279,969 573,000

Table 1: Computational complexity of codeword search for 1024 codewords on Euclidean metric

NEW CODEWORD SEARCH ON QUADRATIC METRIC

A modified method can be applied to previous fast algorithm (Pan et al., 1996a) by preprocessing
C! L first, then X can be operated outside the loop of the codeword search. This modified
method is more efficient than previous one. Assume z,; is the element of the vector C? L,
1 <m< N,1< i<k The modified algorithm is described as follows:

Step 1: Compute the nearest neighbour for the first frame X,;. For the other {rame X, use the
nearest neighbour of X,_; (previous vector candidate) as a tentative match and so find
the initial value of D,,.

Step 2: Calculate X,'L = (91, a2, .-, Yt)-
Step 3: For every codeword Cj, calculate steps 3 to 7.
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Step 4: For every dimension (7 from 1 to k), calculate steps 4 to 6.
Step 5: Caleulate |EVi| = Y., Jy, — 2.

Step 6: If Zi,.=1 |E{Vin|l > VEDpnin, h > i, then C; will not be the nearest neighbour to the
frame X, therefore go to step 3 for the next ecodeword.

Step 7: Calculate |E{Vi]?. I 577 ) |E!Via|? > Dyin, then C; will not be the nearest neighbour
to the frame X, therefore go to step 3 for the next codeword.

Step 8: If ¢ _, |EfVal? < Domin, st Dpin = 35 _, [EVa]? and record C; as the nearest
neighbour to X,.

The test materials for these experiments consisted of 99 words recorded from one male speaker.
The speech was sampled at 2 rate of 16 kHz and 13-dimensional cepstrum coefficients were
computed over 20 ms-wide frames with a 5 ms frame shift. The total number of frames is 9,391.
Experiments were carried out to test the performance of the conventional exhaustive method,
the fast codeword search algorithm without tentative match approach (i.e. with C; as the
tentative candidate) of the previous work, the fast codeword search algorithm with quadratic
metric of the previous work and the proposed new codeword search algorithm for 256, 512
and 1024 codewords. The conventional exhaustive method is referred to as “Conventional”.
The fast codeword search algorithm without tentative match approach and the fast codeword
search algorithm of the previous work are referred to as “No-quadratic” and “Pre-quadratic”,
respectively. The proposed new algorithm is reerred to as “New-quadratic”. The bounds for
quadratic metric are separated into four sections (h = 1,4,9,13). Experimental results is shown
in Table 2, Table 3 and Table 4. In terms of the total number of mathematic operations, the
modified version can reduce by more than 50 % computation complexity. No extra memery is
needed if the same matrix W is used throughout. Hence the original codewords need not be
stored, but can be replaced completely by the transformed codewords C? L.

method mul.(x10%) | emp.(x10%) [add.(x107) | sum{x10%)
Conventional 437,545 2,395 435,141 875,081
No-quadratic 82,691 26,354 92,776 201,821
Pre-quadratic 50,685 18,630 57,003 126,318
New-quadratic 10,926 18,630 27,957 57,513

Table 2: Computational complexity of codeword search for 256 codewords on quadratic metric

method mul.(x10%) | emp.(x10%) | add.(x10°) | sum(x 10°)
Conventional 875,091 4,799 870,283 1,750,173
No-quadratic 142,364 47,619 160,012 349,995
Pre-quadratic 86,963 33,569 97,912 218,444
New-quadratic 18,837 33,569 49,433 101,839

Table 3: Computational complexity of codeword search for 512 codewords on quadratic metric

CONCLUSIONS

A new bound for quadratic metric using principal component transform is derived in this paper.
An efficient codeword search algorithm for quadratic metric is also proposed. Experiments
demonstrate that the proposed new algorithm will reduce the number of multiplications and the
number of mathematical operations for 1024 codewords by more than 77% and 50%, respectively.
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method mul.{x10%) | cmp.(x10%) | add.(x10%) | sum{x10%)
Conventional 1,750,182 9,607 1,740,566 3,500,355
No-quadratic 246,729 86,226 277,687 610.642
Pre-quadratic 147,768 59,737 166,366 373,871
New-quadratic 32,555 59,737 86,882 179,174

Table 4: Computational complexity of codeword search for 1024 codeword on quadratic metric
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