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ABSTRACT—The performance of speech recognizers often degrades rapidly in noisy
acoustic environments. The environmental noise not only disturbs speech features and
affects the reliability of feature extraction, it also causes people to change their speaking
manners. In this paper, we focus on the acoustic effects of noise. We propose to use the
short-time modified coherence representation with a noise-adaptive approach for extrac-
tion of speech features and adaptive weighted logarithmic output probabilities of HMMs for
enhancing the robusiness to the errors in weak speech segments. As a result, proposed
approach works well in both Gaussian white noise and computer fan noise.

INTRODUCTION

in automatic speech recognition, hidden Markov models (HMMs) have been widely accepted. This is
because HMM provides a mathematically rigorous means for modeling speech signals. High perfor-
mance has been achieved under laboratory conditions {Rabiner, Wilpon and Soong, 1989; Picone,
1990). However, when the background noise presents, speech recognition systems based on HMM
degrade rapidly below a certain signal-to-noise ratio (SNR). Noise affects speech recognition sys-
tems in many ways. Additive noise disturbs the speech features. For example, white noise reduces
the norm of cepstrum coefficient (Mansour and Juang, 1989a). Furthermore, noise causes people to
change their speaking manners known as Lombard effects which also reduce the accuracy of speech
recognizers. Therefore, noise is one of the most difficult problems for commercial use of speech
recognition systems. In order to combat the effects of noise, many techniques have been developed,
including speech enhancement (Hansen and Clements, 1991) which restores speech feature, robust
distortion measure (Mansour and Juang,1989a) which immunes to noise distottion, noise adaptation
(Roe,1987; Varga and Moore, 1990) which adapts the speech models to noise condition in certain
domain, and better feature representation schemes such as short-time modified coherence (SMC)
(Mansour and Juang, 1989b).

The SMC takes advantage of inhereni coherence in adjacent segments of speech to enhance the
SNR. For quasi-stationary speech signals, it was shown by Mansour and Juang (1989b) that all-pole
modeling of SMC is a more robust signal representation than that of the speech itself. As a result,
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SMC-based methods were able to achieve high performance if the noise is white. However, in real
world, noise is usually not white. For instance, power spectra of noises generated by cruising car and
computer fan show a decaying trend with the increase of frequency. Therefore, the SMC of speech,
which is based on Gaussian white noise assumption, is not effective to such noise which resuits in
poor performance.

ADAPTIVE APPROACH

In order to improve the performance of speech recognition system, we propose o use a technique
based on noise-adaptive filtering and weighted probabilities of HMMs.

Noise-adaptive filtering

In order to exploit the advantages of SMC representation, we convert the colored noise to Gaussian
white noise. If the noise is d(n), its spectrum, D(z), can be estimated by linear prediction:
G G
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where G is the gain, (i) are the linear prediction coefficients, P is the order of linear prediction. When
speech is corrupted by noise, the noisy speech is

D(z) = (1)

y(n) = s(n) + d{n) @
where s(n) is original speech signal. After filtered by A(z), the noisy speech becomes
ys(n) = s(n) * a(n) + d(n) * a(n) = s¢(n) + d(n) * a(n) 3)

where = denotes convolution. Now, the noise, d(n)+a(n), becomes white noise which can be removed
by the SMC representation. [f the analysis window size is NV, the one-side autocorrelation estimate

of noisy speech is
N-1

Py (mil) =3 yp(msDysn+mil) 0<m<N @

n=0
where y;(n;1) is a frame taken from y(n), l is the index of the frame. Because the noise is assumed
to be uncorrelated with speech signal, we get

ps, (1) + G m=0
pay(myl) m > 0.

Py (mil) = { 3
In order to reduce the noise, we compute the discrete Fourier transform of p,, (m; ) by excluding
Py, (0;1)

N
Ty, () = 3 py, (miDw(m = De¥™*  0<n<N -1 ®
m=1

where w(m) is the Hamming window, j = +/—1. The speech spectrum is obtained by applying inverse
filter of A(z) in frequency domain

Ty, (n;)
A (emiFn)
The estimate of autocorrelation sequence for the original speech signal is computed using the inverse
Fourier transiorm of S(n;1)

Sy =| I N

1 N-1 .
pml) = S S(n; e ¥mn, (8)

n=0
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In this way, our approach not only maintains the main advantages of SMC representation but also is
effective to reduce colored noise.

When we a

wnen we appi 2 of SMC re

consideration. Although the dynamic range of an autocorrelation sequence is large, the limited atten-
uation in sidelobes of a given analysis window results in a small dynamic range of SMC representation
{Mansour and Juang, 1989b). Consequently, the highest spectral peak may mask low energy regions
in spectrum. Therefore, if we use the inverse filter of A(z) to restore speech features as described in
equation (7) when SNR is high, some regions in speech spectrum would be over compensated. The
solution to the problem of overcompensation is that different methods are introduced to reduce noise
according to a given local SNR. If the local SNR is below a certain threshold, we apply the method as
described above. On other hand, if the local SNR is higher than the threshold, spectral subtraction is
used o reduce noise. The residual noise can be viewed as white. Therefore, standard SMC method
is effective to remove such noise.

']
)

One additional problem is A(z) may change the dynamic range of restored speech spectrum. For
robust speech recognition, we have made all efforis to produce consistent features in adverse en-
vironments. The inconsistency of dynamic range will result in degradation in accuracy. Therefore,
dynamic range normalization is essential. The normalized speech spectrum is given by

ot 1) = max{s(m; ), S22zl ©
DV
where Spaz (1) = maxy {s(n; D]s(n; 1) > D(n)}, D(n) is spectrum of the remaining noise and D, is the
dynamic range. After normalization, the proposed approach reduces the noise effect on the restored
spectrum and produces consistent spectrum as well.

Reliability-adaptive weighting

Normally, at the boundaries of a string (or substring), speech signals have fow energy and their fea-
tures are distorted by noise. As a result, features at boundaries will become inaccurate and unreliable
in the presence of noise. It is reported (Junqua and Reaves, 1994) that, for an isolated-word recog-
nizer, more than half of the recognition errors were due to errors at boundaries. Therefore, maintaining
the robustness of the recognizer in weak signal segments is important. This can be solved as follows:
the reliability of feature extraction can be defined as a function of short term speech energy in a given
segment(Eng;), remaining mean noise energy(E,,) and its variance (o,,):

(10)
Eng < E,.

bt 1 —~(z—En)?
RR = { =25, Jiog oxp =5 hds Bng > B,
0

In our system, we use logarithmic output probability of HMM to recognize words. An unreliable feature
estimation of a given segment should have less effect on decision making. Therefore, it should have
a smaller weight. We define the weights as a function of reliability

Wo(RF) = min{RFi_1, RF}, RFi41} (1)

and
Wi(RF) = RF}. (12)

For a standard HMM, its logarithmic output probability at state, ;, for an observation vector, (5, , B & AEy),

is
B;(01, By, AEy) = logb;(Gy) + log py; (Er)™ +log pa; (AE,)™ (13)
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where re is a constant, 0, is a vector concatenating the weighted cepstral vector and the correspond-
ing weighted delta cepstral vector (Rabiner, Wilpon and Soong, 1989), E, and AE, are the logarithmic
normalized speech energy and delta logarithmic normalized speech energy for a given analysis frame
repectively, b;(G;), p1;(Er) and py;(AE;) are state observation probabilities. Therefore, the weighted
logarithmic output probability of the HMM is

WB;(O), Ei, AE)) = Wo(RF) -logb;(01) + Wo(RF) -log paj (AE Y e+

re -logl(1 - Wi(RE) S5, <p 21 (E) + Wi (RF) - prs(B)). D

In this way, the recognition decision making is mainly based on reliable estimation.
DATABASE AND FEATURE EXTRACTION
Database

The database used for evaluating proposed approach is the Texas Instruments-Developed Studio
Quality Speaker-independent Connected-Digit Corpus (TIDIGITS). The corpus was collected at Texas
Instruments in a quiet acoustic enclosure. The data was sampled at 20 KHz by a 16 bit A/D converter.
In order to reduce the computation in feature extraction stage, we resampled data at 10 KHz after
filtered by a 4.6 KHz antialiasing filter. In our experiments, a subset of TIDIGITS database is used
which consists digit strings spoken by 16 speakers (8 men, 8 women). Half of digit strings in the sub-
set forms training set, and the rest forms test set. There are 2048 words (digits) in the training set and
1986 words in the test set.

Feature extraction

Fealures are extracted from speech signals using a 25.6 ms window at 10 ms intervals by proposed
approach. For each frame, coefficients of 10 order LPC are computed from the autocorrelation se-
quence which is obtained using equation (8). The weighted cepstrum vector and corresponding delta
cepstrum vector (Rabiner, Wilpon and Soong, 1989) are

<m<Q (15)

&m; 1) = e(m; 1) - [1 + Fsin(5)]
A ) =CTE k- &mil—k)

where Q = 12, K = 2, C is a constant and ¢(m; 1) is the LPC derived cepstrum vector. The vector 0,
is obtained by concatenating &(m; ) with Aé&(m;1):

Or = {&m; 1), Ad(m; )} (16)

The restored speech energy E; (dB) and delta energy AE; are

amn

E} =10 logEngl,
AE =YK Lk B,

where Eng; = $(0;1). The noise is estimated from the first and last few frames of a given digit string.
The mean remaining noise energy and its variance are

En =3 D5 O + 50T ~ 1 - 1)]
(18)

0n = /2 SEH{Ba — HODP + [Ba — pO;T - 1— D}

where T is the frame number of the given string.

94



EXPERIMENTAL RESULTS

In this connected digit recognition experiments, all eleven digits, zero to nine plus ‘o', are modeled
using six-siate disorete HMMs (DHMMsY. All of tosting speech emnnle are segmented bv the method

USING SIX-8&IC GISCIEe Hnivis (L/ivavisS . esHNg speecn signhais are segr 1eg Dy

{Rabiner, Wilpon and Juang, 1988) on clean condition and known strings with DHMMs. Therefore,
there are only few errors in segmentation. The noisy speech signals are generated by adding noise
signals on clean speech.

In the first experiment, the speech is corrupted by Gaussian white noise which is consistent with the
assumption of standard SMC method. As a result, high performance is achieved by the SMC method.
This method with weighted logarithmic output probabilities of HMMs (SMC_W) can further improved
the accuracy of the recognizer. The resuits are shown in Table 1. Because A(z) = 1 for Gaussian
white noise, there are no difference between the standard SMC method and adaptive approach with
SMC (ASMC) and between SMC_W method and corresponding adaptive method {(ASMC.W).

Gaussian White Noise
SNR || SMC | SMC.W | LPC
oo 97.8 97.8 98.9
20 96.3 97.0 87.8
15 93.4 95.3 68.4
10 89.1 93.6 38.7
5 78.7 86.6 24.2

Table 1: Word recognition accuracies (%) for connected digits corrupted by Gaussian white noise

In the second experiment, the speech is corrupted by computer fan noise whose low frequency en-
ergy is predominant. Due to the small dynamic range of the SMC representation, the spectral peak of
noise may mask the low energy regions of speech spectrum and result in the loss of information when
the standard SMC method is applied. Therefore, its performance is worse than that of conventional
LPC method. Qur approach converts colored noise into white before applying SMC method, there-
fore there is no noise spectral peaks. Besides, our approach excludes the noise predominant spectral
regions to avoid its masking effects when the dynamic range is normalized. The experimental results
shown in Table 2 confirm the improvement of our adaptive approach.

Computer Fan Noise

Without Weighting With Weighting
SNR || SMC ASMC SMC.W | ASMC_W | LPC
[] 97.8 97.8 97.8 97.8 98.9
20 95.7 96.8 96.4 97.1 98.1
15 91.4 95.3 93.6 96.0 93.6
10 76.5 91.2 83.4 93.5 87.2
5 58.1 82.7 72.3 87.2 69.5

Table 2: Word recognition accuracies (%) for connected digits corrupted by computer fan noise

CONCLUSIONS

This paper reports an adaptive approach which uses a noise-adaptive filtering method before applying
the SMC method to reduce noise and emphasizes the reliable features by using adaptive weighted
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logarithmic output probabilities of HMMs to enhance the robustness to the errors in weak speech seg-
ments. Consequently, the proposed approach has achieved better performance than that of standard
the SMC method in recognizing noisy speech corrupted by Gaussian white noise and computer fan
noise at all SNR conditions. Our approach also significantly improves the accuracy comparing with
conventional LPC method when SNR is low. Experimental resulis show the proposed approach is
effective to Gaussian white noise and some types of colored noises.
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