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ABSTRACT - This paper describes a new algorithm to enhance and recognise noisy
speech when only the noisy signal is available. The system uses autoregressive hidden
Markov models (HMMs) to model the clean speech and noise and combines these
to form a model for the noisy speech. The combined model is used to determine the
likelihood of each observation being just noise. These likelihoods are used to weight
each observation to form a new estimate of the noise and the process is repeated.
Enhancement is performed using Wiener filters formed from the clean speech and
noise models. Results are presented for additive stationary Gaussian and coloured
noise.

INTRODUCTION

Speech enhancement systems attempt to improve the perceptual aspects (e.g. quality, intelligibility)
of noisy speech. Many researchers have looked at this task (Ephraim October 1992, Lim 1979). Much
of this work requires estimates of the statistics of the clean speech and the interfering noise. While
training databases are available to make models of clean speech, the noise may only be available as
part of the noisy signal. A popular technique is to estimate the noise from periods of non-speech,
reducing the problem to one of determining whether a given frame is speech or noise.

This work models the noisy speech using an Autoregressive Hidden Markov Model (Juang 1984)
framework. A combined speech and noise model is built and used to recognise the noisy speech.
This model is used to estimate the likelihood of each observation vector being noise. These likelihoods
are used to weight the observation vectors to form a new estimate of the noise.

Autoregressive HMMs are used because they segment the speech into clusters of signals with similar
autocorrelation parameters which are used to form Wiener filters to enhance the speech. Also, speech
recognition in unknown noise is possible with this approach. Additionally, the technique is potentially
extendible to non-stationary noise.

This paper describes the theory of the enhancement system and details the results of experiments
- conducted on speech degraded by additive, stationary Gaussian and coloured noise. These show that
the algorithm can effectively enhance the speech and improve the recognition in noise.

THE ENHANCEMENT SYSTEM

The enhancement system is based on a system by Ephraim (April 1992) but modified to use noise
estimates from the noisy speech. The basic algorithm is given below.
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There are three main components to the system: noise estimation, recognition in noise and enhance-
ment. These are described in the following sections.

Recognition in Noise

The clean speech is modelled by HMMs with pdfs given by Equation 1.

T
P(yg) = Z H O, 5.0z, (¥7) (1)
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Here y1 is a sequence of clean observations {y,,7 = 0,...,T}, zf is a sequence of states {z,,7 =
0,...,T}, @z, _,+, is the transition probability from state z,_; to state z, and b,_(y,) is the pdf
of the output vector y.. from the state ..

The pdf b, (y-) is assumed Gaussian with zero mean and covariance matrix S;, . If the further
assumption is made that the observations are from an autoregressive process of order P, then this
covariance matrix is dependent on only P + 1 parameters (Juang 1984). This assumption leads to
a mathematically tractable system.

The noise process is also modelled by an autoregressive HMM. lts pdf is given by Equation 2.

T
p(ve) =3 I1 az,_iz.bz. (v2) (2)
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Here v{ is a sequence of noise observations {v,, 7 =0,...,7} and ZJ is a sequence of noise states
{&,,7=0,...,T}. Once again again, b() is the pdf of a Gaussian autoregressive process.

For additive noise, these models can be combined to yield a model for the noisy signal. The pdf for
this model is given by Equation 3.

T
Ty .
plzg) = 11 es. 12,2, (27) (3)
2T 750
Here z3 is a sequence of noisy observations {z,,7 =0, .. T}, Z3 is a sequence of composite noisy

states {(2¢;,3,),7=0,...,T}, az__,z, is the transition probability from state #._; to state &, and
bz (2z:) is the pdf of the output vector z, from the state Z..

For additive noise, the following equations hold.

z; yo +vE (4)

Og, 12, = Ozo_y2-03, 2, (5)

be.(a) = [ bz - y2)b(y-)dy (6)
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The pdf bz_(z;) is Gaussian with zero mean and covariance matrix Sz given by:
S2= %5+ Sz ™

Here g” is a gain to take into account the mismatch between training data (for the clean speech
models) and testing data. The calculation of g2 and a mathematically tractable technique to calculate
the determinant and inverse of S; are described by Ephraim (June 1992).

Noise Estimation

An estimate of the noise is required for both recognition of the noisy speech and enhancement. The
required statistics are the noise covariance matrix Sz used for recognition and an estimate of the
noise spectrum used for enhancement. Both of these parameters can be easily estimated from the
noise autocorrelation function.

The noise autocorrelation function is estimated from a weighted sum of the autocorrelation functions
of all of the observation vectors. Each weight reflects the likelihood of the observation being noise.
The likelihoods are determined using the autoregressive HMM framework as follows.

Using the noisy model built from the current noise estimate and the clean speech models, recognition
is performed yielding the composite state-frame alignment. For the stationary noise considered here,
the likelihood of interest is that of the composite state Z, being (z; = silence, Z,). That is, the
likelihood of there being no speech present.

In this work, a simple formula was used to approximate this likelihood where transition probabilities
between states have been ignored and only the observation at time 7 is considered. Specifically, the
the weight w(7) used for the observation at time 7 is given by:
bgs (2-)

T T lobe(z) ®

w(7)

where 75 = (2, = silence, &, ).
Wiener Filtering

Once the most likely state alignment has been obtained using the noisy model for recognition, non-
causal frequency domain Wiener filters are formed. The frequency response of the Wiener filter at

time T is: )
- g:f.(9) (9)
93 f=.(6) + f2.(6)
Here f, () and fz (8) are the power spectral densities of the clean speech state and noise state

and g? is the gain term described in the recognition section. The power spectral densities can be
determined from the autoregressive parameters for these states using the following:

W, (6)

o

fe, (8) = 40P (10)
a%f

fz.(0) = A 0P {(11)

Here A, () and A;_(6) are the Fourier transforms of the autoregressive coefficients for the states
and z; and I, respectively and o, and o;_ are the gains of these autoregressive models.

This technique assumes that one state sequence dominates the pdf in (3). For the experiments
conducted, little to no improvement in enhancement was observed by relaxing this assumption and
forming the weighted sum of Wiener filters.
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Noise Source Clean Models | Noisy Models
(% correct) | (% correct )

None (Clean) 100.0 -

10dB Gaussian 25.0 160.0

6dB Gaussian 125 95.0

6dB Coloured! 22.5 82.5

Table 1: Recognition in Noise

RESULTS

The basic noise estimation algorithm was tested on a simple single speaker isolated digit recognition
task. The data was taken from the Noisex database (Varga 1992). The speech is sampled at 16kHz
and observation vectors are formed by applying a Hamming window to 32ms frames at a frame rate
of 16ms. The order of the autoregressive models was 20. One 8-state HMM was trained for each of
the ten digits and a 1-state HMM was trained for the separating silence.

In these experiments, the effects of adding Gaussian noise and coloured noise were studied. Only
stationary additive noise was considered. The clean models were trained on 100 utterances of digits
(10 of each digit). The digits were grouped into files containing 20 each for training and testing
purposes.

Tests were conducted on 40 different utterances (4 of each digit). Results for recognition in noise
using the clean models and the the noisy models determined by the algorithm are given in Table 1.
It is seen that the noise estimation is sufficiently good to improve recognition in noise for this task.
Four iterations of the noise estimation algorithm were used.

Figure 1 shows the real and estimated (power) spectrum of the 6dB coloured noise on successive
iterations of the algorithm. It is seen that although no formal convergence has been proved, the
estimated spectrum does approach the true spectrum in this case.
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Figure 1: Estimated and Real Power Spectrum of 6dB Coloured Noise

The quality of the enhanced speech was quite high, particularly for the Gaussian noise sources. For
these utterances, the main distortions were some residual noise due to gain estimation errors during
some consonants. This was more pronounced for the coloured-noise speech. Figures 2, 3 and 4 show
the clean, noisy and enhanced spectrums for the first four digits of the speech distorted by 10dB
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Gaussian noise.
CONCLUSIONS

A new algorithm that performs enhancement and recognition and operates when only the noisy signal
is available has been presented. It iteratively uses autoregressive HMMs to model the clean speech and
combines these with noise estimates to form a combined model. This is used to recognise the speech
and estimate the likelihood of each observation being noise. A new noise estimate is determined
using these likelihoods to weight each observation. The enhancement is performed by Wiener filters
formed from the speech and noise estimates. Results presented for additive stationary Gaussian
and coloured noise show the algorithm to be effective. The algorithm is potentially extendible to
non-staticnary noise.
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NOTES
(1) Noise Type 12 ("Lynx’) in the NOISEX-92 database
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Figure 3: Noisy Speech {1 6 3 5 2"} with 6dB Gaussian Noise
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Figure 4: Enhanced Speech (“1 6 3 5 2”) from 6dB Gaussian Noisy Speech
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