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ABSTRACT: The present paper extends the investigation of gender gates proposed in (Barger et
al, 1996) to speech degraded by coding and, separately, room reverberation. Coded speech did
not degrade gate accuracies relative to the uncoded case in (Barger et al, 1996). Reverberation
slightly degraded gate accuracies although this was only weakly dependent on reverberation time.

INTRODUCTION

in our first paper (Barger et al, 1996), gender gates are proposed for Automatic Speaker Recognition (ASR)
and investigated under reasonably favourable experimental conditions. In that work, the main source of degra-
dation is signal band limitation, channel effects and variability of available handsets, all of which are due to
the use of the Switchboard telephone database (Godfrey et al, 1994). However, in real world situations, the
speech signal utilised for ASR is often further degraded by other factors such as

@ noise
e coding and
e reverberation.

The present work directly extends that discussed in (Barger et al, 1996) by considering the effects of speech
coding and, separatly, reverberation on gender gate performance. Speech coding is conducted with standard
coders (GSM and LPC10). This speech is of importance since ASR may be needed for the rapidly expanding
celiular mobile telephone market. The situation would primarily address applications such as information re-
lease over a mobile telephone. It has been confirmed that speech coding slightly degrades ASR (Castellano
and Sridharan, 1996). Reverberated speech is obtained using an image method. The method closely models
that obtained in a rectangular (unfurnished) enclosure. This type of signal obtained is that which must be
dealt with when forensic recordings are made in enclosures or for voice activated security access when a mi-
crophone governs entrance into one room from another room (Castellano and Sridharan, 1996). A series of
text-independent experiments were conducted to determine the effects of coding and, separately, reverberation
upon gender separation using the gender gates proposed in our first paper (Barger et al, 1996) as well as the
same individual classifier types.

GENDER DISCRIMINATION WITH CODED SPEECH
GSM and full rate LPC10 coders

Two speech coding schemes were studied: the full rate GSM coder, commonly used for mobile telephony and
the LPC10 coder used in military applications. The GSM coder uses the Analysis-By-Synthesis Linear Pre-
dictive Coding (ABS-LPC) scheme (Kroon and Deprettere, 1996). During encoding, an excitation sequence
minimising weighted mean square error between original and synthesised speech is determined. This sequence
consists of pulses spaced evenly over a frame. During decoding, speech is reconstructed from the quantised
excitation and prediction parameters. The LPC10 coder differs from the GSM model in that its excitation is
periodic for voiced speech and Gaussian noise for unvoiced speech. GSM and LPC10 coders are used at 13
and 2.4 kbits/s coding rates respectively.

Experiment

Gender gates evaluated in this paper were limited to those which performed best in (Barger et al, 1996).
These incorporated Mahalanobis distance classifiers with or without pruned GMBCMs with HONNs (trained
exclusively with LSPs). In all, 63 different gates were retained out of the initial 126 described in (Barger et al,
1996). For each of the LPC10 and GSM coders, 2 series of gender discrimination experiments were conducted
depending on whether the front-end classifiers were trained with or without coded speech. These experiments
encompassed 63 gates, pitch, 4 speech parametrisation schemes (for the Mahalanobis distance classifiers only),
60 training speakers, 44 test speakers and 50 validation speakers (used to manufacture training data for the
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Coder | Training {Mean number of
type 1datatype |speakers being
used for misclassified on
Percep-  Jthe basis of gender

fron

Uncoded training data, coded test data

uncoded 10.4
LPCI0 " oded 97

uncoded 7.1
GSM coded 74

Coded training and test data

LPC10/ coded 938

GSM | coded 8.7

Table 1: Mean discrimination accuracies over 63 gates for 22 males, 22 females and coded speech

Perceptron). As in ,(Barger et al, 1996) the Perceptron was trained with output data from the front-end
classifiers whose input was speech from the 50 validation speakers. When the front-end classifiers were trained
with coded speech the validation speech, used to generate input for the Perceptron, was also coded. When
the front-end classifiers were trained with uncoded speech, that validation speech was either coded or uncoded
as shown in Table 1. Mean discrimination accuracies, expressed for all 63 gates are shown in that table. Mean
number of speakers correctly identified on the basis of gender, over the 63 gates was similar to what could be
obtained for uncoded telephone speech in (Barger et al, 1996). The most accurate gates for each coder and
training data type for the back-end Perceptron are reported in Table 2 along with their performances. The
main points to notice are that

o gender gates based on a single classifier were outperformed by those based on classifier fusion,

o unlike, in the previous series of experiments (with uncoded speech), complex gates relying on the fusion
of several Mahalanobis distance classifiers outputs were systematically outperformed by gates based on
less fusion (except in the case of the GSM coder and coded training speech for the back-end Perceptron),

o gender discrimination based on GSM coded speech slightly outperformed that based on LPC10 coded
speech, given the present limited data and

e The most accurate gates were as accurate as the best gates tested with uncoded speech.
While the use of connectionist technology (HONN, see (Barger et al, 1996)) did not degrade the better per-
forming gates, it did not enhance gender discrimination accuracies either. (The only exception to this is for
the LPC10 coder and uncoded training speech both for the front and back end classifiers, where the use of a
Mahalanobis distance classifier was detrimental to accuracy.) The GSM, with its high coding rate, is a better
quality coder than the LPC10. It was thus expected that the former would lead to superior gender separation
accuracies.

GENDER DISCRIMINATION IN REVERBERANT ENVIRONMENTS
The reverberant model

An acoustically reverberated speech signal z(n) can be expressed mathematically as the convolution of a clean
speech signal s(n) with an enclosure (room) impulse response A(n):

z(n) = s(n)oh(n). (1)

That response is defined by the transmission properties between source and receiver. It is dependent on
enclosure volume and therefore size, wall surface reflection coefficient, source and physical content of the
enclosure. Reverberation smears all sound and therefore speech. Any low frequency energy present in the
speech signal is especially affected (Nabelek et al, 1993). The present study makes use of Allen and Berkley’s
image method (Allen and Berkley, 1979). The method is able to simulate a rectangular room response in the
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Coder Gat?_ i E;?ingnge ls\lumbeersof‘ <clas
T 1. -
type ﬁ(s)ﬁléfg: (r)é] use% dPr sgﬁgg on the f)asis
and classifier |Percep- | of gender
gusxqt;l&s . tron
2l g;evfatfgns*
Uncoded training data - coded test data
GMBCM uncoded 2
LPC10 cep pitch coded 2
ref pitch uncoded 2
Isp pitch uncoded 2
GSM Isp GMBCM | uncoded 2
ref pitch coded 1
Coded training - coded test data
cep pitch coded 3
ref cep coded 3
LpC10 ref autoc coded 3
ref GMBCM | coded 3
GSM | Isp cep pitch | coded 1

* ref: Mahalanobis distance and reflection coefficients R
cep: Mahalanobis distance and Mel-based cépstrum cliysggictents
Isp: Mahalanobis distance and Line Spectrum Pairs (L3Fs)
autoc: Mahalanobis distance and autocorrelation coefficients
pitch: pitch alone
GMBCM: pruned HONNs (S=1) and LSPs

Table 2: Most accurate gate for 22 males, 22 females and coded speech, as a function of coder type and
training data type for back-end perceptron

time domain. A speaker is modelled as a point source. Assuming a rigid smooth wall, the associated boundary
condition is satisfied by positioning an image symmetrically behind the wall. This image, being a point source,
is also imaged so that for a 6 wall system an infinite number of images are-produced.- In- practice, walls are
non rigid and the present image method is not exact but it provides a good approximation to the real world
situation. An enclosure impulse response is given by:

e - - - 6t = |Ry + Brlfe
e X =Y 3 sl ol et e b, )
p=0r=—00
where: t is time,
pis (qvj»k;):
ris (n,l,m),
X is speaker location in 3 dimensional space: (xy.2)s
X' is microphone location in 3 dimensional space: (z’,y(,z'),
Ry is (z = ' +2zy—y + %y z— 7 +2k2),
R, is 2(nLeytLy,mL;), ((Ls, Ly, L) being enclosure dimensions),
¢ is the speed of sound at sea level,
Br. is wall reflection coefficient: (1 - a)/? (o being the Sabine energy absorption,
coefficient for wall k, k € [1..6]) and
() is the delta function.

Allen and Berkley's image method implementation allows for a comprehensive range of enclosure parame-
ters to be accurately controlled.

Experiment

The reverberant environment of interest here consisted of a number of constants which include room dimensions
(8x6x4 m?®) and speaker to microphone separation (3 m). B; was varied between 0.75 (tow reflectiveness)
and 0.97 (high reflectiveness) and was taken to be the same for all 4 walls, ceiling and floor, at any one
time. {For a B¢ equal to 1, an impulse response was not attenuated when being reflected off a solid surface.)
The same 63 gates as well as males and females, investigated for speech coding were again studied here.
(Al parametrisation schemes, as well as pitch, were also retained.) Given reverberation times of 0.18, 0.31
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to 0.72 and 2.25 s the speech signal was, respectively, lightly degraded, moderately degraded and virtually
unintelligible. (These times correspond to a B¢ of 0.75, 0.8, 0.85, 0.9 and 0.97 respectively, given our model
of the room). For all gender gates, the back-end Perceptron was trained using two possible data sets which
included

o output from front-end classifiers whose input was non reverberant speech from the 50 validation speakers
(N.R.) and

e as above but with validation speech reverberated with a standard impulse response corresponding to a
corner of the room (two metres away from each wall) (S.R.).

Thus the characteristics of the standard impulse response were different from those which affected the test
speech since the impulse response, in this case, was taken to be the centre of the room. (This discrepancy was
necessary since, in a real world situation, the exact characteristics of reverheration contaminating test speech
are not known because the associated impulse response is not known.)

Figure 1 illustrates mean percentages of correct discriminations for a back-end Perceptron trained using either
N.R. or S.R.. The use of N.R. led to a sharp degradation in mean gate accuracy with increasing reverberation
time. By substituting N.R. with S.R., mean gate accuracy did not change significantly as a function of
reverberation time, except for heavy reverberation (2.25 s). However, even for the latter reverberation time,
mean discrimination accuracy was only 2 per cent below that recorded in the anechoic case (see Figure 1 ).
Moderate reverberation (0.31 to 0.45 s) was even seen to benefit the gender discrimination problem, given
S.R. It may be that this degree of reverberation smears low energy speech with high energy speech such as
vowels. Unlike the latter, the former is poorly indicative of speaker identity (Rudasi and Zahorian, 1991).
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Figure 1: Mean percentage of correct gender classifications, over 63 gender gates, for 22 male and 22 female
speakers, as a function of reverberation time. The gates’ back-end Perceptron is trained with output from
front-end classifiers whose input is either anechoic or reverberant speech from 50 separate speakers.

The most accurate gates, under the present reverberant conditions are listed in Table 3. Conclusions are
analogous to those reached in the case of coded speech, notably

e gender gates based on a single classifier were outperformed by those based on classifier fusion,

o complex gates relying on the fusion of outputs from many classifier types were systematically outper-
formed by gates based on less fusion, irrespective of reverberation time and
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* ref: Mahalanobis distance and reflection coefficients
cep: Mahalanobis distance and cepstrum coéfficients
Isp: Mahalanobis. dzscthnce and L§Ps . .
aiioc: Mahalanobis distance and autocorrelation coefficients
pitch: pitch on its own
GMBCM: pruned HONNs (S=1) and LSPs
Table 3: Most accurate gates for reverberant speech, 22 male and 22 female speakers as a function of

reverberation time and training data type for back end perceptron

o gates were more robust when their back-end Perceptron was trained with output from front-end classifiers
whose input was reverberant rather than anechoic.

The accuracies obtained were probably sufficiently high for associated gender gates to be used in a forensic
context as front-ends to ASR systems. This view is supported by three arguments which are

1. If a speaker's gender is misclassified by a gate the speaker may still be rejected at the speaker verification
stage,

2. In most cases, no other means of person authentication are available and

3. ASR evidence is accepted as supportive only, in a court of law.

Another problem which has not been covered here is that of reverberation contaminating speech spoken into a
handset during a telephone conversation. This reverberation would be caused by the enclosure containing the
speaker and handset (thus be separate from channel induced distortion). Distance between source (mouth)
and receiver is, at most, 10 cm. In the case of ASR, such a short separation restlts in minimal degradation
in speaker discrimination accuracy even when classifiers are trained with non reverberant data (Castellano
and Sridharan, 1996). Since we believe gender separation to be a simpler problem, we expect the impact of
enclosure reverberation upon gender discrimination based on hand held telephones to be very smali indeed.
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However, this may not be the case for hands free telephony.
CONCLUSION

Gender separation experiments were conducted under degraded acoustical environments. The same 63 gender
gates retained in our other paper (Barger et al, 1996) were again investigated in the present work. Switch-
board’s test signal was first coded using, separately, LPC10 and GSM coders. The latter series of experiments
were repeated using Mahalanobis distance and HONN classifiers only (63 gates). Coding the classifiers’ train-
ing data did not enhance results. The most accurate gates were as accurate as the best gates tested with
uncoded speech.

Finally, the (uncoded) and previously unreverberated Switchboard signal was contaminated with reverber-
ation and experiments repeated once more for the 63 gates. The environment modelled that of a room with
fixed speaker to microphone separation using an image method. Training data were anechoic. By training
the Perceptron with reverberated data affected by a different room impuise response to that present in the
test data (because the fatter is unknown in practice}, mean gate accuracy did not change significantly with
reverberation time (except for heavy reverberation).

The most robust all-round gates, in (Barger et al, 1996} and in the present work, consisted of 2 Maha-
lanobis distance classifiers with fused outputs or pitch fused to the output on one such classifiers. The best
all-round speech parameters were reflection and Mel-based cepstrum coefficients. Future work should use a
greater number of test speakers and investigate whether a more powerful back-end classifier than a Perceptron
would benefit the more complex gates discussed in this study.
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