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ABSTRACT - Text-to-speech conversion has traditionally been performed either by
concatenating short samples of speech or by using rule-based systems to convert a
phonetic representation of speech into an acoustic representation, which is then
converted into speech. Concatenative systems can require large amounts of storage,
while speech from synthesis-by-rute systems may not sound natural. A time-delay neural
network system is described which produces natural-sounding speech while requiring
lass storage than concatenative systems.

INTRODUCTION

Tradiionally, text-to-speech conversion systems have relied on either carefully coded rules
determining the parameters for a synthesizer — usually a formant synthesizer — or concatenation of
short segments of speech such as diphones and demisyllables (Klatt, 1987; Allen et al, 1987). With
the concatenative approach saving the recordings of the short speech segments can require a
significant amount of storage, but the speech produced by these systems can be more natural
sounding than that produced by rule-based systems. A third altemative to these traditional text-to-
speech systems is to train a machine leaming system, such as a neural network, to generate the
mapping between a sequence of phonemes and an acoustic description from which a speech
waveform can be generated (Karaali et al, 1996). it has been determined that this third approach can
combine the strengths of the two traditional methods by producing high quality synthetic speech while
at the same time requiring much less storage than concatenation systems.

SYSTEM DESCRIPTION

Overnview

The blocks that make up the text-to-speech system are shown in Figure 1. The text-to-linguistic
component, which will not be described here, converts the input text into a phonetic representation of
speech, including information about prosody. Originally, this information consisted only of syntax and
stress information, but a more recent version of the system uses the ToBl! system (Silverman, et. at,,
1992; Beckman and Hirschberg, 1994) to provide an explicit description of intonation as well. The next
two components use neural networks to generate segment durations and the sequence of acoustic
descriptions used by the synthesis section of & vocoder. (The corresponding analysis section of the
vocoder is used to train the networks.)The duration generation, phonetics-to-acoustics, and vocoder
components are described below.
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Figure 1. Block diagram of text-to-speech systsm during run-time

Duration network

The first step performed in converting the linguistic description provided by the texti-to-linguistics
component into actual speech is to establish the timing of events in the speech signal. This is
performed by assigning a duration to the time segment associated with each phone in the utterance.
(In this system, the timing of Suprasegmental events relative to the phonetic segments is
predetermined.) In order to generate each segment duration, the neural network is presented with
input including: a series of binary vectors representing the phone expressed during the segment and
the surrounding phones (each vector is coded with a single bit set to represent the phone);
information indicating whether the phone begins or ends a syntactic constituent such as a syliable,
word, phrase, clause, or sentence; binary values indicating whether the syllable containing the phone
Is stressed; and a bit vector based on the part of speech of the word containing the phone.

Phonetic network

Once the timing of the speech signal has been established, the phonetic network is used to convert
the linguistic information and timing into acoustic descriptions of each ten-millisecond frame of speech.
(The nature of these acoustic descriptions is discussed below, in the description of the vocoder.) For
each speech frame, the input to the neural network includes a description of the phonetic segment
which includes the start of the frame, as well as the phonetic segments including other times, sampled
irregularly over a 415 millisecond window, with the sampling occurring at five-millisecond intervals in the
middle of the window, and at larger intervals near the window boundaries. This use of a sampled
window, rather than a sequence of phones, with the position of the frame in the phone as an additional
input, contrasts with other attempts to synthesize speech with neural networks (Cawley and Noakes,
1993; Tuerk et al, 1991; Tuerk and Robinson, 1993; Weiiters and Thote, 1993). Other network inputs
describing the frame include: a description of the features of each phoneme (such as LABIAL or
VOICED); the distance to major syntactic and prosodic boundaries; the stress of the current phone;
and the word category (such as NOUN or ADJECTIVE). The phonetic network takes these input values
and predicts an appropriate acoustic description for each frame.

Vocoder

The final step in generating sampled speech data from text is to convert the acoustic frame
descriptions into the sampled data. This is accomplished with the synthesis portion of an
analysis/synthesis vocoder. (The analysis portion is used to generate the training data for the phonetic
neural network, as shown in Figure 2.) For ease of neural network training, it was decided that a
parametric vocoder with a fixed frame format would be used. This vocoder used a training set of 13
parameters: ten coefficients describing an autoregressive filter for spectral shaping, the energy of the
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frame, the pitch of the frame, and the boundary between two separate excitation bands in the frame.
The vocoder is a mixed-source vocoder(Makhoul et al, 1978), with a iow-frequency voiced band and a
high-frequency unvoiced band; the boundary between the two bands is allowed to move. The output
of the vocoder can be sent directly to a digital to analog converter which can be used to drive a
speaker.

Vocoder
(Analysis)

Training Database (speech
with phonetic, syntactic, and
prosodic labels)

\\_— o

Duration Linguistics-
Generation to-Acoustics

Figure 2. Block diagram of training portion of text-to-speech system

Training data

The neural networks which generate segment durations and acoustic descriptions of speech need to
be trained. Figure 2 shows the system configuration used during training. The training database
includes a set of recordings from a single speaker, consisting of approximately twenty minutes of
speech. This speech was labeled in a variety of ways. The original phonetic labeling was performed in
the manner described by Seneff and Zue (1988). The speech was also divided into syllables, words,
phrases, clauses and sentences. Each syllable was tagged as having no stress, secondary stress, or
primary stress. Each word was assigned a tag based on the part of speech of the word. Finally, the files
were labeled according to the ToB! annotation conventions, as described by Beckman and Hirschberg
(1994). The speech was processed using the analysis portion of the vocoder and combined with the
label data to provide a set of training vectors containing input and desired output for the phonetic
network. The network was then trained using back propagation. The label data was also processed to
produce training data for the duration network, which was also trained using back propagation.

RESULTS

in an independent comparison of this speech synthesis system with other text-to-speech system
{Nusbaum, et al, 1995), this system was found to have a more acceptable voice to listeners than the
existing systems. The neural network system was found to be less intelligible than the other systems.
In part, this may be because the network was only trained on sentence-length texts, and the
intelligibility test used monosyliables spoken in isolation. The database is being expanded to include
examples of monosyllables, as well as a greater variety of sentence styles.
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Figure 3 shows the results for the acceptability test. The listeners were asked to rate the quality of
speech in a variety of sentences they heard, with one representing unacceptable speech, and 7
representing speech they would want to hear again. The systems compared were three traditional text-
to-speech systems, including one concatenative system and two synthesis-by-rule systems. The two
neural network systems included one in which durations were matched to naturai speech (NN 1) and
one with the durations generated by a neural network (NN 2). The input text to the text-to-speech
systems was adjusted to provide correct pronunciations, as the experiment was intended to compare
the speech synthesis technologies, not the overall performance including text analysis. The neural
network systems performed significantly better than any of the traditional systems in this test.
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Figure 3. Mean acceptability score for various systems

Figure 4 shows the results from the segmental intelligibility test. In this test, listeners were asked to
identify monosyllabic words generated by the systems. The test measures how many of these words
were identified correctly. The same systems were compared as in the acceptability test, and natural
speech was also included. As the result show, two of the text-to-speech systems had significantly
greater segmental intelfigibility than the neural network systems, but natural speech was more
understandable than any of the systems.
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Figure 4. Percent of words recognized correctly by various systems
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The system has been implemented to run in real time on both a Power Macintosh 8500/120 and a
Windows 95 system using a 200 Mhz. Pentium Pro microprocessor.

CONCLUSION

Text-to-speech synthesis based on neural networks is demonstrated to provide the benefit of
generating more natural sounding speech than traditional methods. Real time implementation of the
system demonstrates the feasibility of the technology. Further benefits expected for the technology is
the relative ease of providing new languages and voices for the text-to-speech system.
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ABSTRACT — This paper looks at applying MAP decoding to low rate speech codec parameters
as a means of protection at low channel SNRs. It has been shown that MAP decoding works
wellin protecting LSPs but the method has not been applied to other parameters. By using theo-
retical source data, results are obtained that compare MAP decoding with other more conven-
tional technigues.

INTRODUCTION

When considering the use of a parametric low rate speech codec for a speech transmission system, the
normal method of design involves using separate source and channel coding stages. The design goal
is thus to compress the source information as much as possible and then apply a good channel codec
tothatinformation, given alt the system and channel constraints. This philosophy is valid if all of the redun-
dancy is removed from the source infarmation. Unfortunately rarely does all redundancy be removed from
the source information, especially when considering speech codec parameters.

An aiternative method is to leave the residual redundancy present in the coded speech information and
use the redundancy at the channel decoder. In this way all of the redundancy can be used for channel
protection instead of trying to extract it by using complicated quantisation techniques.

The aim for such a channel decoder is to utilise ail information about the signal, which involves both chan-
nelinformation and prior information about the source. This paper provides a formal analysis using Baye-
sian probabilities to describe a maximum a posteriori probability (MAP) decoder. It also explores how such
adecoder can be used to protect low rate speech codec information. Two simple test cases are examined
using Gaussian and Gauss—Markov source parameters.

MAXIMUM A-POSTERIORI DECODING

To construct a decoder, a model of a communication system is required for analysis. The model in Figure
1is a simplified case, consisting of a speech codec providing speech parameter value X at time index n.
This is channel coded and modulated to create symbol U,. This symbol is passed through the channel,
where noise is added to the symbol and then received as V, ( V, =L, + Noise). This paper assumes
the use of an Additive White Gaussian Noise channel. After decoding, an estimate of the original value
is obtained. This scalar case is used to simplify the analysis, however sequences are explored later.

Speech Coding & Channel Demodulation Speech
Encoder | X | Modulation| (j, V, | & Decoding Decoder

s

Figure 1 — Simple Speech Communication Mode!

Using the MAP model above, the estimator in equation (1), as described in [1], states that the source value
X, can be estimated as the expected value of X, given the received value of V.

X, = EX|V,) )
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