EXTRACTION OF A SPEECH SIGNAL IN THE
PRESENCE OF A MUSICAL NOTE SIGNAL

K. Chong and R. Togneri

Centre for intelligent Information Processing Systems
Department of Electrical and Electronic Engineering
The University of Western Australia

ABSTRACT - This paper presents the methodology of extracting a speech signal in the
presence of a musical note signal using the GRNN (General Regression Neural Network). An
overview of GRNN is presented first, followed by preliminary simulations. Results of
extracting speech in the presence of a flute and a cello note are also presented.

INTRODUCTION

Speech and musical note signais have overlapping spectra. Hence, extraction of the speech signal
cannot be done by using conventional filters. The new approach is to employ a type of artificial neural
network (ANN) calied the General Regression Neural Network (GRNN). The GRNN does not need any
information from the frequency domain ~ it learns to map an input signal to the desired output signal by
way of examples. The methodology involves training the GRNN to map an incoming signal, which is a
composite of speech and musical note signals, to the desired output signal, which is the musical note
signal alone. If the mapping is done successfully, then the speech signal can be extracted by
subtracting the output signal from the input signal.

OVERVIEW OF GENERAL REGRESSION NEURAL NETWORK
The Regression Function Concept

Before discussing the regression function concept, it is worthwhile to clarify the notations used. The
standard notation is adopted where upper-case letters are used to denote a random variable while

lower-case letters are used to denote a specific value: For example, X is the random variable and x is
a value. Hence, X = x means that the random variable X takes on the value X.

A regression function performed on an independent variable X computes the most probable dependent
variable Y, based on a finite number of noisy measurements of X and the associated values of Y. The
variables ¥ and Y can be thought of as the input and the output of a system respectively. The
regression function could be a mathematical function of X with unknown parameters, a;. In the case of
linear regression, for example, the output Y is a linear function of the input X. The unknown
parameters a; are hence the linear coefficients.

A General Regression Neural Network

The General Regression Neural Network (GRNN) was first introduced by Donald F. Specht (Specht,
1991). It performs a regression of Y on X. The method employed is not governed by a specific
function. Rather, it allows the appropriate form to be expressed as a probability density function (pdf)
that is empirically determined from the observed data using Parzen window estimation (Parzen, 1962).

The variables X and ¥ can be vectors. For the rest of this paper, the input variable considered will bea
vector while the output variable a scalar. The notation used for the remainder of this paper is the unput

vector X (X =[X; Xo -+ XF]T where T denotes transpose) and scaler output Y.

The regression performed by the GRNN is in fact the conditional expectation of ¥ given X = x. In other
words, it outputs the most probable scalar ¥ given a specified input vector x. Mathematically, it is
expressed as
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From equation (1), it is evident that if the joint pdf of X and ¥ is pre-determined, then the expected
value can be computed. Otherwise, it must usually be estimated from a sample of observations of X
and corresponding ¥ using non-parametric estimators.

A suitable estimator, fxy (x,¥), of fyy(x,y) is given below.
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where J, is the desired scalar output given the observed input vector X,
p is the dimension of each X, and x
n is the number of spherical Gaussian pdfs in the summation
ais the standard deviation (also referred to as the smoothing factor)
T denotes transpose

Substituting equation (2) into equation (1) and performing the indicated integrations yield:
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In equation (3), the parameters are X,, ¥,, and o The X, and ¥, are directly determined from
observing inputs and desired outputs (thus 7 is the number of observations). Each (X,,7,) pairis a
training input vector, output scalar pair, and # of these pairs form the fraining set stored in the local
memory. By this conceptualisation, the GRNN can be thought of as a memory-based network that

provides estimates of continuous variables, and converges to the underlying regression surface. The
regression surface can be linear or non-linear.

When the underlying parent distribution is not known, an optimum & cannot be determined for a given
number of observations n. The method used to find an appropriate is therefore empirical rather than
theoretical. The process for locating the most suitable o is termed training.

There are two ways in training the GRNN. One way is to present to the network another independent
set of input-output observations called the testing set. Using equation (3), the GRNN computes outputs

repeatedly using known (and fixed) parameters X, and ¥, (in the training set), and a varying &. For
each o) the computed outputs are compared to the desired outputs found in the testing set. The

performance of the GRNN using a particular ¢ is evaluated using the mean-squared error (MSE),
given as:
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where Y., isthe  actual output {corresponding to the * input vector in the testing set)
Yai isthe " desired output found in the testing set
m is the number of observations in the testing set

The most appropriate s the one corresponding to the least MSE value.

if the testing set is not available, another method termed the holdout-one test can be employed to
locate the most suitable & In this case, one vector from the training set is taken out at a time and
tested against the remainder vectors. Hence at any instance, there should only be n — 1 training
vectors in the memory since one is taken out to be used as a testing vector. As befare, o varies for
each complete test, and the MSE is used to evaluate the performance of each o The most suitable o
would be the one corresponding to the least MSE value.

How the GRNN is Applied to Digital Signal Processing

When applying the GRNN to digital signal processing, it is essential to convert the incoming digital
signal to a sequence of input vectors. The elements of the first vector are the first p samples of the
incoming signal, where p is the input vector dimension. The next vector would contain samples that are
advanced by one sample from the last vector. This advancement of the input vector frame continues
until all the samples in the input signal are contained in at least one input vector. Hence for a signal
with N samples, N-p+1 input vectors can be constructed. Note that the number of output values is
also N-p+1. Therefore, after passing through the GRNN, the filtered signal will lose p—~1 samples.

PRELIMINARY SIMULATIONS

Before the GRNN was applied to extract speech from the presence of a musical note signal, a
prefiminary simulation was done. The purpose of this simulation was to study the behaviour of the
GRNN under basic signal processing operations.

The simulation discussed here is that of filtering a harmonic combination in the presence of Gaussian
noise. The equation for the original signal used is given by sin(2xft) + sin(4nft) + sin(6xft) + sin(8xft).
This signal is shown in figure 1. The Gaussian noise is characterised by zero mean and a standard
deviation of 0.5. The overall corrupted signal is shown in figure 2.

The best input vector dimension for this problem was 70, the most appropriate number of training pairs
was 750, and the most suitable o was found to be 0.90. The corresponding MSE was 0.0038410402.
After the training was completed, a similar type of signal as that shown in figure 2 was presented to the
GRNN for filtering. The resulting output signal, having lost the first 69 samples, is shown in figure 3.
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“Figure 1 Original Harmonics of Sinusoidal Signals
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‘Figure 2 Corrupted Signal
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Figure 3 Output Signal

Comparing figure 3 with 1 shows that the waveforms are identical except that the amplitude of the
output signal has dampened. This is referred to as the amplitude dampening effect.

EXTRACTION OF SPEECH

In the extraction process, the function of the GRNN is to filter off the speech signal from an input signal
which consists of both the speech and the musical note signals. if the output signal is exactly the
original musical note signal, then the speech signal can be reconstructed exactly by subtracting the
output signal from the input signal. The reason for this approach is because the GRNN is more
capable of filtering off the irregularities (speech signal) and retaining the periodic (musical note signal).

The speech signal employed for the extraction problem, shown in figure 4, is a male voice saying “this
is a speech signal”. The corrupting musical note signal is a flute note at frequency 440 Hz. Both signals
were sampled at 8000 Hz. The reason for the chosen sampling rate is to minimise the number of
observations and hence computations and yet maintain the fidelity of the signals.

The samples of the digitised musical note were scaled to within -0.9 and 0.9, and the digitised speech
signal to within -0.1 and 0.1. The corrupted signai is an additive combination of the two scaled signals,
as shown in figure 5. As the result of the corruption, the words in the speech are no longer
recognisable.

The GRNN was trained to filter off the speech from the corrupted signal (figure 5). The most suitable o
found was 0.034 with an MSE value of 0.0000363579. After the signal in figure 5 was passed through
the GRNN, the output signal was subtracted from the input signal. The resulting signal is shown in
figure 6. The words in this filtered speech signal are now recognisable. However, a soft flute tone can
be heard in the background (evident in figure 6), this can be explained by the amplitude dampening
effect. The output signal from the GRNN (before it was subtracted from the input) had its amplitude
dampened. When subtracting this dampened signal from the input signal, an error signal (heard as a
flute tone) would result, and this error signal is imposed on the filtered speech signal.
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Figure 4 Original Speech Signal

632



= e

Lyce Version of Fri, 16 July 1993 [{0UET

- = S : & Yore
[imerern Ta T 00m fome W Sies Tobw lno Bini O00us i00hms 1100 1200ns [1300ms 100 {T800ns 1600ns 700ns 1E0NS
tola

Globsl

(it}
[tola]

o e i : Regolution

T - — g

Lyre Version of Fri, 16 July 1993]{QUIT
[iavetorn Too] o225 205 B0 L1

b

Global
Rescluticn

1

-4707

Figure 8 Filtered Speech Signal (from a flute note)

A cello note was used next in the place of the flute note. The cello note was of frequency 440 Hz and
sampled at 8000 Hz. The same corruption level was used. The corrupted speech signal is shown in
figure 7. Due to the rich quality tone of a cello note, not even the presence of the speech signal was

evident, After the GRNN was trained successfully, the most suitable ¢ found was 0.62 with MSE value
of 0.0012753863. Next, the signal in figure 7 was passed through the GRNN, and the output signal
was then subtracted from the input signal. This subtracted signal (filtered speech signal) is shown in
figure 8. Although there is a strong tone in the background, the words in the filtered speech signal are
recognisable. The reason for the presence of this strong tone is once again, the error signal being
imposed on the filtered speech signal.
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Figure 7 Corrupted Speech Signal (by a cello note)
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Figure 8 Filtered Speech signal (from a cello note)
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CONCLUSION

It has been shown that the GRNN does not need any information about the frequency domain
characteristics of the signals to be filtered. it maps signals to one another by way of examples. Hence it
has the ability to separate a speech signai and a musical note signal although they have overlapping
spectra. However, the current form of the GRNN does suffer from some limitations. One fimitation is
that it needs computer memory to store its training set. Another limitation is in its inability to filter
signals in real time. Both of these limitations can be overcome by performing a prior clustering of the
training observation sequences and thereby reduce the number of observation samples used to form
the network. Another problem is the amplitude dampening effect, however since this is a gain effect
some form of optimal gain control can be used.
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