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ABSTRACT - Low bitrate speech coding finds application in both telecommunications (band-
width compression) and archival (filespace compression). Speaker verification is used in
telecommunication applications (to gain access to particular services, for example) and implies
that either or both of the speech data streams (incoming and reference) may be compressed.
In this paper, we investigate the effect of high compression methods on the effectiveness of
automatic speaker identification and verification. LLossy compression of the speech (whether
transmitted or stored) requires vector quantization of the short-term spectral parameters in
order to achieve high compression ratios, and thus implies some loss of accuracy in the repre-
sentation of these parameters. However, in the situation where the same spectral parameters
are utilized in identifying the speaker, the identification accuracy may be compromised by the
compression process. We present in this paper our findings on the effect of compression on
identification, for one particular family of vector quantization methods.

PROBLEM FORMULATION

In considering the evaluation of the effect of spectrum compression on speaker identification, four pos-
sible scenarios arise as shown in Table 1. These are :-

(i) The “benchmark” for all cases, using “raw” speech in the identification process. No compression
is performed.

(i) The speech database is compressed (for example, on CD-ROM) and the incoming speech is
available in uncompressed form.

(iii) The incoming speech is compressed, but the reference is not. This arises in telecommunications
applications. Note that in this case the speaker identification parameters may be pre-computed
and stored (depending on the identification algorithm), allowing the speech database to be com-
pressed.

(iv) Both the existing database and the incoming speech are compressed.

Case (i) is studied in this paper, and is illustrated in Figure 1. This situation arises in forensic speech
processing where the database of suspects has been archived and a new suspect is to be compared.

It is assumed that the distance D..4.4 is available, and the distance Dy, o400 iS Not available. A Vector
Quantization (VQ) scheme is designed for the speech spectral parameters, and two methods of speaker
identification are examined: the Mahanolobis distance and the log-probability derived from a Multivariate
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Figure 1: Compressed speaker identification scenario.
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Table 1: Compression and Speaker Identification.

Condition | Speech Database _Incorning Speech |
[0] 16-bit PCM 16-bit PFCM
) VQ Compression PCM
i} PCM VQ Compression
(iv) VQ Compression  VQ Compression

Gaussian Mixture Model (GMM). Two families of VQ method which are known to achieve high compres-
sion are studied: multistage VQ and split VQ.

VECTOR QUANTIZATION

The coding method examined in this work involves Vector Quantization (VQ) of the Line Spectral Fre-
giency {LSF) parameters obtained fiom the short-term analysis of the speech every 20 milliseconds.
This method produces very large compression of the short-term spectral information, at the expense of a
far more complex vector coding operation and increased distortion. The coding of the LSF's is examined
in more detail in (Paliwal & Atal 1993). The operation of vector quantization may be divided into two dis-
tinct steps. The first of these, the training phase, requires a knowledge of the joint statistics of the vector
parameter set to be coded. In practice, this is normally done via a training database consisting of a large
number of representative codevectors. The second phase, the coding phase, may be further subdivided
into the encoding operation and the decoding operation. The encoding operation requires a search of
the vector codebook for each vector to be encoded to find the minimum error vector. The codebook
index of this vector is then transmitted. The decoder on the other hand has a significantly less complex
task: to look up the vector index it has received in the local codebook. The codebook design must be
sufficiently robust against alf possible permutations of the input vector to ensure adequate coverage of

the vector space (Collura & Tremain 1993).

Direct vector quantization of the LSF parameter space is known to be unsatisfactory. Before proceeding
to the identification phase, we must choose a suitable VQ method that yields accaptable performance in
the spectral distortion sense.

Split VQ (SVQ) is illustrated in Figure 2. This method splits the LSF parameters into smaller sub-vectors,
each with its’ own sub-codebook. Muitistage VQ (MSVQ)} is illustrated in Figure 3. This method involves
several successive VQ codebooks, each encoding the residual of the previous stage(s). MSVQis utilized
as an integral component of the MELP codec (McCree, Truong, George, Barnwell & Viswanathan 1996).
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Figure 2: Split Vector Quantization (SVQ)
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Figure 3: Multistage Vector Quantization (MSVQ)
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Figure 4: Distribution of spectral distortion in Split Vector Quantization (SVQ) using single and tree-
structured multiway search algorithms.

SPEAKER IDENTIFICATION

Speaker identification involves the identification of a speaker from the voice alone (Gish & Schmidt
1994), (Furui 1994), Several measures of distance have been proposed in the literature. In this study,
we have utilized two quite different approaches. The first is the Mahanolobis Distance Metric (MDM)
D (F) : t = 1,...,T, which is easily computed from any m-dimensional vector parameter set & (Par-
sons 1987), Previous work suggests that the fine spectral frequencies give superior identification accu-
racy using the MDM metric, when compared to the LPC coefficients.

The second approach utilized is the Gaussian Mixture Model (GMM). This approach involves the mod-
elling of the sequence of vectors # as a mixture of multivariate Gaussian probability density functions.
This approach is somewhat more complex than the MDM, but has been shown to provide superior

identification resuits on clean speech (Reynolds & Rose 1995).

Table 2: 24 bits per frame VQ methods studied.

Method Paramelers
Multistage VQ 3 stages, 256 codevectors per stage
Tree-Searched Multistage VQ As above, 2-way branch per codebook
Split vQ Input vector split 2,2,3,3 with 64-vector codebooks per subvector
Tree-Searched Split VQ As above, 2-way branch per codebook
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Figure 5: Distribution of spectral distortion in Multistage Vector Quantization (MSVQ) using single and
tree-structured multiway search algorithms.

Table 3: Average spectral distortion for VQ methods.

Method Spectral Distortion, dB
Multistage VQ 1.6970
Tree-Searched Multistage VQ 1.3863
Split vQ 2.0378
Tree-Searched Split VQ 1.9451

RESULTS

Results were obtained using Region 2 of the TIMIT speech corpus (Linguistic Data Corporation 1990}
and the MSVQ compression algorithm. Figure 6 shows that the effect of compression on the calculated
Mahanolobis distances is significant, and that the effect is to reduce the apparent values after compres-
sion. This is indicated by the appearance on the scatter plot of the points below the 45° line. The relative
spread is indicated by the relative width of the ellipses enclosing the points in the vertical and horizontal
directions.

Figure 7 indicates that the effect of compression on the log-probability of the set using the Gaussian
Mixture Model is negligible. The values are stilt clustered around the 45° line after compression.

The mean of the Mahanolobis values (Table 4) is decreased in approximately the same proportion in
each case, moving from 3.06 to 2.98 in the same-speaker case, and 3.98 to 3.81 in the different speaker
case. The means of the Gaussian model values (Table 4) are changed slightly after compression for both
the same-speaker and different-speaker cases. The change in the same-speaker case is negligible,
however the change in the different-speaker case is an increase from 5.12 (uncompressed) to 5.19
(compressed), thus making the speakers “appear” more similar. However, the change is so small as to
be negligible.

Table 4: Mean distance metrics for Mahanolobis /eft and Gaussian right.

Mahanolobis Same Different Gaussian Model | Same  Different
Compressed | 2.9778 3.8133 Compressed | 7.7955 5.1908
Uncompressed | 3.0637 3.9777 Uncompressed | 7.8061 5.1224
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Figure 6: Compressed speaker identification using MSVQ compression and Mahanolobis distance met-
ric.
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Figure 7: Compressed speaker identification using MSVQ compression and Gaussian Model! distance
metric.
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CONCLUSIONS

We have studied the application of speaker identification/verification methods to compressed speech.
It was expected that the process of compression would lead to reduced performance of the identifica-
tion algorithm. We have demonstrated that this is indeed the case for the iow-complexity Mahanoiobis
distance metric calculation, but that a modeifing method using Gaussian mixtures is substantially more
robust to the compression process. Further work is needed to determine whether this robustness is
dependent upon the number of mixtures used in the modelling process.
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