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ABSTRACT - The effect of assuming a vocal disguise on the formant frequencies of some
vowels is examined. The material used was that of an authentic vocal line-up in which the identity
of the speaker was in question. The subjects assumed commonly adopted vocal disguises

INTRODUCTION

People who feel that their personal safety or the security of their property is at risk may employ a
recording device (video- or audio-) which may firstly act as a deterrent or later as an aid in
apprehending an assailant, should the threat be realised. Recording instruments may also be used
by the police and other agencies in surveillance, in the investigation and prevention of crime. Of
course people whose activities may be the subject of such recordings are often aware of the’
possibility and may assume a disguise to hide their identity. Recordings may be made surreptitiously,
in less than ideal conditions and may be of such poor quality that the identity of the speaker (and the
content of the message) may be open to doubt. So it is that the testimony of the expert witness is
called upon, to resolve uncertainty, to penetrate the disguise and validate suspicions as to the identity
of the perpetrator of an action. The examination of objective recordings by expert witnesses is
attractive in forensic work, since studies into the reliability of eyewitness (and earwitness) accounts,
even when these are available, are not reassuring. Whether experts afe in fact able to extract
patterns from the speech signal which reliably identify a speaker who is attempting to avoid
identification is a question still to be answered. This paper is a preliminary attempt to identify what
happens to some aspecis of the speech signal, namely the formants of some vowels, when a vocal
disguise is adopted. Vowel formants were selected for measurement as they are such an obvious
feature of the spectrogram, and because a great deal is known about them in natural speech. In
particular, it was of interest to see whether the upper formants (F3 and F4) remained more or less
constant over disguise, as these are usually assumed fo reflect in part personal characteristics of the
speaker, such as bone density and the shape of bony cavities, and should therefore resist major
changes brought about by altering vocal fract shape in the course of assuming a disguise.

SUBJECTS

Two healthy young adults, one female and one male, both native born speakers of general Australian
English prepared a tape for analysis.

MATERIALS
The subjects read text which had been the material used in an authentic ‘voice line-up".-

I'll have that thanks.

Money in the bag.

| want to buy a bracelet for my wife.

| don't want one with a padlock.

Can | have a look at the diamond rings.

Don't be silly.

Get the pads and put them in the bag, and the money.
Put the money in the bag.
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PROCEDURE

The subjects read the text in their normal voice, (N), assuming ‘natural, ¥ somewhat urgent,

intAanatine

Then in turn they adopted six vocal disguises which were selected to copy what people commonly do
when disguising their voice. It was also hoped that the disguises would impact on vowel formants in
clear-cut ways, so that the ‘take-up' of the independent variable on the dependent variable could

easily be seen. The disguises were:-

Helmet (Hm) A motor-bike rider's full helmet, very well stuffed, was worn in an effort to
dampen resonances from the sinuses and bony structures of the face and skull. It was predicted that
this might affect the higher formants more than the lower.

Foreign accent (A) The subjects adopted a foreign accent' that they felt comfortable with. In the
case of the young woman this was a Southern US. accent and in the case of the young man it was a
Scottish accent. It was simply assumed that the vocal tract resonances would be changed with the
imitation of different vocal patterns.

Stairwell (S) Subjects bellowed into the microphone in a highly echoing concrete stairwell
that extended up 4 floors. The common use of mobile telephones makes sending messages from
such a location possible. It was assumed that the extra effort involved in making the transmission
would alter all formants.

Helium (He) The well known effect of helium on the voice was extended to include an
examination of its effects on vowel formants. Subjects inhaled by mouth the contents of a helium-
filled balloon.

Creaky voice (C) After practice, the subjects assumed creaky voice (vocal fry) which
dramatically changes fundamental frequency, though it is not entirely clear what effect this has on
formants.

Tube (T) The subjects talked down a thick-walled hard cardboard tube, 2.5cm in
internal diameter and 21.5cm long, thus effectively more than doubling the length of their vocal fract
and consequently introducing additional formants.

EQUIPMENT
The tapes were made with a Sony DAT portable tape recorder and a Sony microphone, ECM-959DT.

The formants were measured from spectrograms displayed by the Kay DSP5500 Spectrograph.
Single target vowels in stressed position for which at least two tokens were available were selecied
for measurement. Mean values were calculated for these tokens.

RESULTS
Four vowels, /=/, /A/, iif, fu/ met the criteria for inclusion.
The results for each subject are displayed in Tables 1 and 2

DISCUSSION

Formant values for each subject's normal voice are compatible with the ranges suggested by Bemard
(Bernard and Mannetl, 1986) for men and by Penny (Penny, 1992} for women. Comparing formant
values in disguised voice against normal voice it can be seen that:-

1. The helmet condition changes things vety little.

2. For Subject 1 (young woman) the assumption of a foreign accent (Southern US) spread the range
of values with F3 and F4 considerable higher. For S2 (young man) a Scottish accent produced a
generally downward shift in F1 and very little change in F2, F3 or F4.

3. The stairwell condition elevated F1 but there is no clear effect discernible on the other formants.
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Table 1: Subject 1(female) Formant values for natural voice and 6 voice disguises

Vowel /a/

N Hm A S He [oF T
Fi 756 672 728 804 1000 888 632
F2 1888 1792 2028 1952 1796 1952 1216

F3 2800 2760 3184 3096 2504 3234 1888
F4 4004 3832 4480 4296 3125 4688 2708

£5 4128
Vowel /a/

N Hm A S He o] T
F1 780 700 540 780 750 1000 630
F2 1680 1680 1600 1460 1350 2320 1070

F3 2960 2760 3600 3100 1960 3620 1480
F4 4140 4140 4980 4140 2410 5160 2540

F5 3360
Vowel //

N Hm A S He (o} T
Fi 430 540 480 500 540 920 500

F2 2260 2220 2800 1660 1030 2020 1200
F3 2960 3000 3240 2780 2610 3800 2120

Fa 3820 3960 4460 4020 2890 5295 2760
F5 3880
Vowel fuf
N Hm A s He C T

F1 490 580 520 580 610 900 520
F2 1420 1360 1620 1440 1220 2120 1030
F3 2360 2420 3080 2020 1960 3260 1360
F4 3570 3420 4340 2880 3190 4780 2420
F5 ) 3490

Subject 2 (male) Formant values for natural voice and six voice disguises

Vowel /=/

N Hm A S He C T
F1 625 660 668 732 884 732 652
F2 1588 1636 1192 1688 1294 1572 1464
F3 2836 2620 2792 2860 2964 2932 2076
F4 3636 3580 3564 4184 2892 3644 2772
F5 3628
Vowel /a/

N Hm A S He [o] T
F1 640 640 550 670 750 1000 610
F2 1410 1410 1390 1470 1350 2320 1310

F3 3000 3000 2660 2910 1960 3620 2040
F4 3590 3870 3400 4220 2410 5160 2850

F5 3656
Vowel v/

N Hm A S He o] T
F1 440 440 420 560 540 920 400

F2 2000 1980 1920 1560 1030 2020 1940
F3 2570 2870 2670 2700 2610 3800 2100
F4 3690 3690 3785 4080 1960 5295 3130
F5 3880
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Table 2 cont

Vowel fuf

N Hm A S He c T
Fi 480 480 410 500 550 460 510
F2 1270 1270 1520 1470 1120 1370 1210
F3 2740 2740 2720 2560 1670 2260 2020
F4 3570 3570 3620 3620 3110 3570 2730
F5 3550

DISCUSSION (cont)

4. Helium seems to have had an elevating effect on F1 and F2 but a depressing effect on F3 and F4.
5. Creaky voice has the rather surprising effect of elevating all formants.

6. The tube, by effectively increasing the length of the vocal tract, changes its resonating
characteristics markedly. A second formant is introduced lower than the natural F2, and F3, F4, and
F5 are all lower, as would be expected.

CONCLUSION

If you wish to disguise your voice, and assuming that an expert phonetician will pay regard to formant
frequencies, use a tube to extend the length of your vocal tract. Do not bother with a helmet. There
is no evidence that F3 and F4 resist change more than the other formants.
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ON-LINE SPEAKER ADAPTATION FOR HMM BASED SPEECH RECOGNISERS
B. Watson

ABSTRACT — An investigation of a gradient-descent based training technique was per-
formed for the on-line adaptation of hidden Markov models to new speakers in a speech
recognition system. It was found to be successful for supervised speaker adaptation, im-
proving the recognition performance on a 46 word task (alphabet, digits and control words)
from 88.0% to 93.2% after adaptation with nine repetitions of each word. Unsupervised
adaptation on the same task was unsuccessful. However, for an easier 20 word vocabulary,
unsupervised adaptation improved the recognition performance from 97.7% to 99.0%.

INTRODUCTION

The Baum-Welch re-estimation procedure for hidden Markov models (HMMs) directly maximises the
likelihood of the training observations given the model. It is suited to the batch estimation of model
parameters. In order to update models as new data becomes available, a smooth on-line learning
algorithm is desirable. Baldi and Chauvin have proposed such an aigorithm, and have experimented
with its use for HMM training in a molecular biology problem (Baldi et al., 1993). Baldi and Chauvin's
approach to HMM training is based on the use of a gradient descent algorithm. Suppose we wish to
maximise some function £, that is dependent on a model parameter z. We can do this by calculating
the gradient of the objective function £, and making a small change (Az) to the value of the parameter
based on this. The value of the parameter z,, after training step n is:

z? = 2" + Az”

where Az™ is calculated using the partial derivative of the objective function with respect to the param-

eter, %é, evaluated at vaiue z”. That is:

n o 6’6 -1
Az” = 5 s +nAz

u is a learning rate parameter, which controls the size of the parameter changes between training
steps. It will affect both the speed of convergence, and the stability of the model parameter estimates. A
momentum parameter, i, can also be introduced into the update calculations, in order to allow the use
of a larger learning rate parameter, while still maintaining consistent updates, as it can provide partial
averaging over the training observations (Hertz et al., 1991).

Consider an N state discrete output HMM with A/ possible outputs. Let the state of the model at
time ¢ be denoted as s;, and the output at time ¢ be denoted as o,. The model parameters are: initial
state probabilities, =; = Pr(sy = i); transition probabilities, a;; = Pr(s:31 = jls: = ©); and discrete
output probabilities, b;x = Pr(o, = k|s, = ). The parameters of the HMM will be referred to collectively
as A. Thatis, A = {4, B, 7}, where 4, B, and =, are the sets of transition, output, and initial state
probabilities, respectively. Because all of these parameters are probabilities, when summed over the
appropriate range, they will sum to 1.

For the HMM, we wish to update the model corresponding to a particutar utterance, O, so that it
maximises the likelihood of the model producing that utterance, L = Pr(O})). Gradient descent on the
log-likelihood is numerically better conditioned than gradient descent on the likelihood (Levinson et al.,
1983) so the log-likelihood was used as the objective function for modet training.

For both the transition and output probabilities, a normalised-exponential representation is intro-
duced, to ensure that as probabilities they will have values between 0 and 1, and sum over the appropri-
ate ranges to 1. The transition and output probabilities are written in terms of new parameters, w;; and
v;; respectively, which are the values before normalisation:
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 Is a parameter of the normalisation function which, can be absorbed into the learning rate.

The derivative of the log-likelihood with respect to w;; and v;; can then be derived (see (Baldi and
Chauvin, 1994)) so that updates can be calculated. The derivatives are:

dlogL o o
awij = 59[22:71,1,_7 Zt:'h,aas]} (1
Slog L
og_ = o[Y Euig— D bl (2
dvs; - "

where v.;; = Pr(s; = i,5c41 = JlO,A), 14 = Pr(s; = i0,)), and &35 = Pr(s; = 1,00 = jlO, ).
These values can be computed using the forward and backward algorithms.

SUPERVISED ADAPTATION

Although our main interest in the proposed gradient descent technique is for on-line unsupervised
learning, we began by analysing its behaviour for supervised adaptation of speech recognition models
in order to determine: what models constitute the best prototype models, which are to be used as the
starting point for speaker adaptation; how the performance of the adaptation algorithm depends on the
amount of adaptation data; and what values of the learning rate and momentum parameters give the
best results.

Experiments were performed on the Texas Instruments 46 word speech database. This database
contains recordings from sixteen speakers - eight male and eight female. Each speaker has uttered the
letters of the alphabet, the digits from zero to nine, and ten “control” type words (enter, erase, go, help,
no, rubout, repeat, stop, start, yes). The data from each speaker has been divided into a training set of
nine or ten utterances, and a test set of sixteen utterances of each word.

The TI-46 database was selected for experimentation because it represents a small but chalienging
task. Accurate alphabet recognition is difficult because the vocabulary contains a number of highly
confusable words such as the e-set (B, C, B, E, G, P, T, V, Z {for American English)).

The speech waveforms from the Ti-46 database were processed in a standard manner for input to
the HMM recogniser. The speech waveforms in the database were sampled at 12.5 kHz with 12-bit
quantisation. These waveforms were segmented into frames of 512 samples (40 milliseconds) with a
new frame starting every 128 samples (10 milliseconds). The samples were pre-emphasised with a filter
whose transform function is 1 — 0.9527%, and Hamming windowed. For each frame, twelfth order LPC
cepstral coefficients were calculated, along with first and second order delta coefficients.

Left-to-right hidden Markov models with ten states were used to model each of the vocabulary words.
Supervised adaptation of each of the models, for each speaker, was performed by using each fraining
utterance to update the relevant model, using values computed according to equations (1) and (2).
In figure 1, the recognition performance following supervised adaptation is presented as a function
of the learning rate and the amount of adaptation data used. The results presented were obtained
when the starting models were speaker independent, but had only been trained using the data from the
other speakers of the same gender as the target speaker. Genderless speaker independent models
were observed to give recognition performances approximately 1% lower than those obtained using
gender specific models. However, in both cases the adaptation improved the recognition performance
substantially.

Adapting from the gender based speaker independent models, with a learning rate of between 0.18
and 0.26, the recognition performance improved from 88.0% to 93.2% following adaptation using nine
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