A TALKING WORD PROCESESOR

David Hawthorn” and Chris White’

"Department of Business Systems
Monash University

ABSTRACT - Speech is becoming an increasingly common form of computer output. Its
applications are any situation where the reading of a computer screen may be difficulf. This
paper looks at one very easy method of implementing speech in Microsoft Word for
Windows (1).

INTRCDUCTION

Speech is becoming an increasingly common form of computer output. Although computer speech
output has many applications, the main interest of the authors is with print handicapped computer
users. Unfortunately computer speech hardware and software often have a price tag which is not
compatible with the majority of these users.

This paper presents a simple method of computer speech output in Word for Windows which is
based on a macro by Edwards (1995). This method will work with any Windows application that has a
macro fanguage and supports Dynamic Data Exchange (DDE). If this macro is used in applications
other than Word, some modifications may be necessary as not all Windows applications have the
same macro language.

The following hardware and software are required for the method presented:
A 386 or better PC
SoundBlaster sound card (8bit or better) (2)
Microsoft Windows (3)
Monolog for Windows (often bundled with SoundBlaster sound cards) (4)
Word for Windows

With the popularity of home computers and sound cards for computer games many users would
already have the majority of these requirements. Not only is this method simple, it is also
inexpensive. The popularity of Word as a word processor and the SoundBlaster card for sound were
important factors in deciding to use them.

Text-to-speech conversion is the method used for the speech production. This method does not
require a large database of words (in texi form) and associated sound files. The sounds produced are
derived from the spelfing of the words by using standard phonetic rules for pronunciation. There is
the facility to add words to a fibrary which allows the standard rules to be ignored. This library
contains a list of words along with a phonetic description of each word. No sounds are actually stored.
Words such as “read” are an obvious problem; they have two distinct pronunciations. Monolog
pronounces the past tense form the same as the present/future tense. In order to resolve this, the
grammatical structure of the sentence and the context may need to be analysed. Text-to-speech
conversion of this quality is obviously complex and expensive. Intonation is also important in the
meaning of speech. This would also be a feature of a more advanced text-to-speech conversion
package.

The speech obtained from Monolog tends to be a little mechanical. This can be a problem as the
listener can tire easily of a mechanical monotone voice. It is the common cost/quality trade-off.
Better quality can be obtained by spending more money, but it may be more money than what many
can afford.

403

THE MACRO

The foilowing Word for Windows 6 macro will speak an entire Word document. The document is

auiomaticaliy scrolied so that the text being spoken is always in view. The sentence currently being
spoken is fighlighted.

The macro relies on a Dynamic Data Exchange (DDE) link between Word and Monolog. The current
sentence is sent to Monolog and then the macro immediately (without waiting for the sentence to be
spoken) proceeds to the next command. This forces a busy wait loop to be written to allow Monolog
time to speak the current sentence. If this is not done the highlighting gets one step ahead of the
speech. The highlighting cannot get more than one step ahead as the DDEPoke command will not be
executed whiist the destination program (in this case Monolog) is busy.

"loop to allow Monolog time to speak the sentence
ipc = 100 * iength

lpc=lpc-1
If Ipc > 0 Then Goto Ip

As can be seen, even with the attempt to link the loop count with the length of the current sentence,
this could not be considered an elegant program. Apart from the obvious problem of the loop
execution time being dependent on the computer's speed, the length of the sentence is not be
directly related to the amount of time faken to speak the sentence. This is most easily seen at the
end of paragraphs and in sentences which contain numbers. In a future working paper we will look at
an alternative to DDE which solves this problem.

The following code shows the details of the macro. The actual speaking takes little code. Most of the
code is to move consecutively through the sentences, highlight the current sentence and to restore it
to the standard colour.

Sub MAIN
On Error Goto et

init:
‘initiate DDE
ChanNum = DDEInitiate("Monolog", "talk")

‘get current position
InitSelStart = GetSelStartPos()
InitSelEnd = GetSelEndPos()

'move to start of document
StartOfDocument
Goto b300

nextsentence:
another = SentLeft(1, 0)
‘loop to allow Monolog time to speak the sentence
Ipc = 100 * length

Ipc=Ipc-1

If Ipc > 0 Then Goto Ip
SelectCurSentence
CharColor 1 'black

‘select sentence
another = SentRight(1, 0)

404

b300:
a$ = "select sentence"”
SelectCurSentence
all$ = Selection$()

length = Len(ail$)
CharColor 9 'blue

‘do the actual talking
a$ = "talk"
DDEPoke(ChanNum, “Talk", ali$)

‘goto next sentence
a$ = "next sentence”
another = SentRight(1, 0)

‘end of document

a$ = "end of document”

endoc = AtEndOfDocument()
if endoc = - 1 Then Goto finish

if another = - 1 Then Goto nextsentence
On Error Goto 0

Goto finish
et:
On Error Goto 0
‘errors come here
MsgBox a$
finish:

another = SentLeft(1, 0)
SelectCurSentence

CharColor 1

'go back to initial position
SetSelRange(InitSelStart, InitSelEnd)
‘close DDE7
DDETerminate(ChanNum)

End Sub

One tip which may be useful in large documents: if you want to stop ihe macro before it has finished
speaking the whole document you can press Esc. The Macro should stop at the end of the next
sentence.

CONCLUSION

The macro presented in this paper gives a method for speech production in a word processor. The
speech is not of the highest quality but the method is simple and inexpensive. It has the potential to
be of great benefit to the print handicapped.

ACKNOWLEDGMENTS

This work is part of development under the “Essex Project” support for which has been provided by
Aridyne Corporation and Advanced Micro Systems.

405

NOTES

(1) Microsoft Word for Windows is a trademark of Microsoft Corporation.
) SoundBiaste{ is a trademark of Creative Labs.)

(3) Microsoft Windows is a trademark of Microsoft Corporation

(4) Monolog for Windows is a trademark of Creative Labs.

REFERENCES

Edwards, J.D. (1995) Spoken Word (in Technical Tips), Australian Personal Computer, 16:2, 190.

406

Young~Mok Ahn, Hoi—Rin Kim

Spoken Language Processing Section
Electronics and Telecommunications Research Institute

E—mail : aym@zenith.etri.re kr

ABSTRACT — This paper proposes a very fast preprocessor for a iarge
vocabulary isolated word recognition. This preprocessor extracts a few
candidate words using the frequency and the time information for each
word. For designing reference pattern, we use the order of amplitude of
speech feature. So, the proposed preprocessor has a small computational
load after the extraction of speech feature. In order to show the
effectiveness of the proposed preprocessor, we compared it to a speech
recognition system based on semi—continuous hidden Markov model and a
VQ—based preprocessor by computing their recognition performances of a
speaker independent isolated word recognition. In experiments, we use
three types of speech database. The first, a speech database consists of
244 words including digits, English ailphabets, etc. The second, a speech
database consists of 22 words including section names. The third a speech
database consists of 35 words. This preprocessor is composed of three
major-parts:-the-feature extraction;-the feature sorting, and-the reference
pattern matching with reference templates. After sorting it requires only one
vector addition per frame, namely, vocabulary size x length of incoming
frame. In consequence, this approach is therefore much faster than our
previous version which is the VQ—based preprocessor for isolated word
recognition task (Ahn et al, 1994). In the experimentatl results, the accuracy
of feafure sorting based preprocessor is 99.86 % with 90 % reduction rate
for the speech database of 244 words.

INTRODUCTION

In a large vocabulary task, the speech recognition system should have some efficient
algorithms for reducing the computational load. To develop an efficient algorithm which
is reducing the search space such as Viterbi beam search, it is necessary that the
algorithm should not degrade the system performance. In real applications, the speech
recognition system should have another efficient algorithm which can reduce the
memory size. If the speech recognition system have a large memory space, it is not a
emulous product. Considering the computational load and the memory size, the
proposed approach shows the solvability on the isolated word recognition problem.

Although the proposed preprocessor is less exact compared to other speech
recognition systems in the recognition performance of the first candidate word, it keep
an appropriable preprocessor, because the preprocessor can extract a small candidate
words including correct word from the large vocabulary within correct word on
maintaining the system performance. And the preprocessor is easily constructed from

407

the training speech database. On the other hand, use of the preprocessor for
continuous speech recognition is not easy. This is because, to achieve the
preprocessor with high accuracy performance, a large speech database with the precise
labeling information should be prepared. So, the preprocessor combined in the
continuous speech recognition system. To measure the performance of the proposed
preprocessor, we performed the experiments on the speaker independent isolated word
speech recognition. And we compared that with other speech recognition system
performances.

In the rest of the paper, an overview of the proposed preprocessor and other speech
recognition system is first introduced in the section of system overview, and than the
performance of each system is described in the section of experiments. The
experimental results and concluding remarks are given in the section of conclusions.

SYSTEM OVERVIEW

In order to show the effectiveness of the proposed preprocessor, we compared it to
three types of speech recognition system for their recognition performances of a
speaker independent isolated word recognition. The brief introduction is as below.
Although the main purpose of each system is not same, but they provide a appraisal
experimental result for isolated word recognition.

Feature sorting based preprocessor(FSP)

Recently, auditory system has begun to play a larger role in motivating the design of
some speech recognition front—end systems. And spectral transitions play an
important role in human auditory perception. In other words, the current speech signal
is much influenced by the previous speech signals. And it is also meaningful to
hypothesize that the speech signals have the relationship among orders of feature
vectors. The idea of the feature sorting based preprocessor is derived from the
hypothesis.

This preprocessor is composed of three major parts: the feature extraction, the feature
sorting, and the reference pattern matching. After feature sorting it requires only one
vector addition operation per frame, namely, vocabulary size x length of incoming
frames. And the feature sorting requires very small computational load compared with
vector guantization. The feature sorting based preprocessor is very similar to the VQ—
based preprocessor except the vector quantization. Let y,,¥,....,¥, be a label
sequence produced by the feature sorting based acoustic processor in response to an
utterance of some unknown words. In the feature sorting based preprocessor of

obtaining a short list of words, we seek a word scoring function of the form where SW
7

S,=yviy,witi, (w=12,...N)
i=1

denotes the score for word W, v(y, ,W) denotes a real—valued vote cast by labet

¥, for word w. /, denotes the initial value of S, and A denotes the number of

words in the vocabulary. A short fist can then be constructed from the highest scoring
words. (Lalit et al, 1988) Further information for constructing reference patterns of the
feature sorting based preprocessor can be found in (Ahn et al, 1994), (Lalit et al, 1988).

408

