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ABSTRACT - In this paper we present neural network approaches which enable both the
analysis of a high dimensional data space of phone templates and the construction of a
speaker-independent isolated phone classifier based on a Generalized Radial Basis Function
Network (GRBFN). Firstly, we present a codebook obtained by a neural motivated fuzzy
Vector Quantization procedure. Such codebooks provide an intrinsic discretization of the
data space expanded by phone templates into various phone groups, e.g. stops, fricatives,
nasals and vowels of different pitch. Secondly, a codebook is used to train a three-layer
GRBFN in a two-step optimization process. As a result we obtain a speaker-independent
single phone recognition accuracy of 63.1% on the training set and 62.2% on the test set
for 52 different phone classes. A coarse classification of five phone groups into ’stops’,
"fricatives’, 'nasals’, 'semi-vowels’ and 'vowels’ yields a recognition accuracy of 87.6% on
the training set and 87.0% on the test set, respectively. Phone templates are obtained
from the male training corpus of the TIMIT database.

1. INTRODUCTION

In the field of automatic speech processing, neural network approaches for data analysis and classifica-
tion, e.g., neural motivated Vector Quantization (VQ) methods and Radial Basis Function classifiers,
have been shown to be useful tools. Both techniques and their relationship are reviewed in the
following two subsections.

1.a Neural Vector Quantization procedures

Vector Quantization techniques serve to map a data space X C R™ characterized by an a priori
probability distribution P(x), x € X, onto a finite set of so-called prototypical codebook vectors
w, €W ={w, € R"| r=1,...,N}. The mapping is defined by a mathematical prescription
which associates the data vectors x € X to the codebook vectors w, € W.

In the case of hard clustering a data vector x is associated to only one prototype w,, which is
next to x. This prototype w,, is called the "winner”. The Max-Lloyd algorithm (Max, 1960 and
Lioyd, 1982) implements hard clustering. In the sequential version of this algorithm a "winner takes
all” learning rule performs a gradient descent on a quadratic error function. However, for non trivial
data distributions the minimization of such an error function belongs to the class of NP-complete
optimization problems. As is generally the case for such optimization problems, gradient descent
methods are unable to find optimal or even "good” solutions, because those solutions strongly
depend on the choice of the initial conditions. A second weakness of these schemes is the slow
convergence due to the ”winner takes all” strategy.

One tries to overcome these drawbacks by the so-called soft competing VQ procedures. These
algorithms are characterized by cooperative-competitive learning rules of the type

Wi ¢+ 1) = i (8) + € 0, [x(8); W(2), ] [x(t) ~ w, (1)), &
Here, a data vector x is randomly selected according to the probability distribution P(x). Each

adaption step is scaled by a small parameter ¢ and a so-called cooperativity function a, > 0.
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a,(x; W, &) is a function of the presented data vector x(t) and depends parametrically on the state
of the codebook W (¢) and the value (¢} of the so-called cooperativity parameter x > 0. In the case
of x = 0 the cooperativity function a, is non vanishing only for the “winner”. Here, hard clustering
and a corresponding " winner takes ail” strategy is recovered. Whereas for a non vanishing value of
 the "winner’ and a set of codebook vectors are adapted. In a simulated annealing process the
cooperativity parameter « is reduced from a large value to a smail or vanishing value.
A number of neural motivated VQ procedures can be considered within this framework, e.g., the
Kohonenalgorithm (Kohonen, 1982), the " Neural-gas” algorithm (Martinetz and Schulten, 1991),
and a fuzzy VQ scheme derived from a minimal free energy criterion (Rose et al., 1990). Soft com-
peting VQ procedures entail better results and faster convergence than the classical hard clustering
procedure. In the following we want to focus on a specific soft competing algorithm: the fuzzy VQ
scheme. Here, the cooperativity function
——r <12 /924523
(W, k= p) = eAP‘\I|""Tg‘ x||°/26%) (2)

is given by globally normalized Gaussians of width p. Z = 3 exp —{||w, — x||?/2p%) is the normal-
ization factor and p is the cooperativity parameter of this model. The so-called "fuzzy range” p = &
defines a length scale in data space. Due to the normalization 3~ a. = 1 and the condition a, > 0
the cooperativity function is considered to be a conditional probability «,(x) = p(r|x) of associating
a given data vector x to codebook vector r.

The fuzzy VQ scheme has been thoroughly studied (Rose et al., 1990, Dersch, 1996 and Dersch
and Tavan, 1994, 1996). The Learning rule (1) with a, given by (2) describes a stochastic gradient
descent on a error function which is a free energy in a mean—field approximation whose complexity
strongly increases with a decreasing value of the fuzzy range p.

At large values of the fuzzy range p one finds a completely degenerated codebook. All codebook
vectors are located at the first moment of the data space and as we say there exists only one cluster
center. At each value of the fuzzy range one finds a distinct number of cluster centers who's positions
and degree of degeneration are uniquely determined by the minimality requirement of the free energy.
A corresponding annealing process entails a hierarchical, fuzzy discretization of a data space on
multiple length scales. The analysis of codebooks on different length scales defined by the fuzzy
range p provides insight into the structure of a data space on different resolution scales. It has been
shown that codebooks obtained by this scheme are characterized by well defined properties (Dersch
and Tavan, 1994). These properties can be exploited to control the learning process and enhance the
quality of the resulting codebooks. In the remainder of this section we show how codebooks serve
to construct a classifier in 2 Radial Basis Function architecture.

1.b Generalized Radial Basis Function Network

Multi Layer Perceptrons {MLP), see Rosenblatt (1958), are well established classifier systems covering
applications in the fields of pattern recognition and classification. Classification addresses the problem
of assigning a data vector x, € X = {x, € R*| r =1,...,N} to a given class {x, — ¢, with
¢ €[1,...,m]| r=1,...,N}. AMLP used for a classification task maps an input vector x,, € R"
onto an output vector y(x,} € R™, with y;(x,) = 1 for (i = ¢,) and y;(x,) = 0 for (i # ¢,).

A commonly used training algorithm for MLP is the Backpropagation algorithm (Rumelhart and
McClelland, 1986). Moody and Darken (1989) proposed a promising alternative to train a three
layer network. The authors propose to train a network in a two step process.

In the first step the input weights of the N-hidden neurons are obtained by a VQ procedure. Secondly,
the output weights are calculated by minimizing the quadratic classification error

E={ly(x) - F A (3)

Where y(x) is the desired output vector of the network for a given class membership of a data
vector. F is the {(m x N) matrix of the output weights, A(x) is the N-dimensional vector of the
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hidden layer activity. Here, the hidden neurons are characterized by Gaussian activation functions
A (x) = exp —|lw, — x||*/2p% of width p centerd at w,. (...), denotes the average over the
data set. In our approach we are following the two step training scheme, but apply the presented
fuzzy VQ scheme, rather than the Max-Lioyd algorithm as suggested by Moody and Darken (1989)
for a number of reasons mentioned above. Further, we globally normalize the activation function
of the hidden layer according to Equation {2), following a scheme proposed by Girosi and Poggio
(1989), instead of using unnormalized Gaussians. In this approach the hidden nodes no longer show
a radial response centered at w,. We therefore call our network Generalized Radial Basis Function
Network. The architecture and training of such a network of locally tuned units show a strong
biological motivation (Poggio, 1990 and Marr, 1969).

The remainder of this paper is organized as follows: In the next section we present the essential
processing steps of the speech signals. The following sections show the results of the VQ process
and present the training and test of the GRBF-Network for speaker-independent phone classification.

2. SPEECH DATA AND PREPROCESSING

Isolated phone temnplates are obtained from read speech of the phonetically transcribed TIMIT
database (NIST, 1990). We subdivided the speech corpus into a subset of training and test data as
proposed by NIST. Only male speakers are considered.

A series of preprocessing steps are performed on the sound pressure signal. At first, a short-term
Fourier transformation is performed, using a 40msec Hamming window and a 10msec step size.
Secondly, the Fourier coefficients are combined into 21 channels on a nonlinear bark scale. Finally,
we compress the dynamic range of the resulting power spectrum by calculating the fourth root of
each coefficient and truncate noise below a certain threshold. At the center of each phonetically
labelled segment phone templates comprising 21 bark channels and 9 time frames are extracted.
Thus, a isolated phone is represented by a 189-dimensional phone template. Each of these phone
templates is normalized to zero mean and uniform contrast.

3. INTRINSIC PHONE CLASSES

In order to gain insight in the structure of the 189-dimensional space of phone templates we performed
a hierarchical fuzzy VQ for the training set of 10° phone templates.
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Figure 1: Multidimensional scaling of 52 prototypical phones and five cluster centers {triangles).

The corresponding annealing process undergoes a sequence of hierarchical discretizations of one,
three and five cluster centers (Dersch, 1996). A closer investigation of the data space on the level of
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five cluster centers, corresponding to a fuzzy range p = 0.3, is illustrated in Figure 1. Figure 1 shows
the result of a reduction in dimension by multidimensional scaling (Mardia et al., 1979) of the five
prototypes (triangles) and of 52 prototypical phones obtained by simple averaging over all templates
of each class. Here, we made use of the labelling according to TIMIT. Figure 1 reveals a clustering
of the mean vaiues of various phone groups. Phones belonging to the phone group stops, fricatives
and vowels are located at different cluster positions.
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Figure 2: Conditional probabilities of associating 52 phoneme classes to the 5 prototypical templates
shown in Figure 1

For a closer investigation of the data space we approximately calculate the conditional probabilities
p(r|k) that template x; from class k is associated to prototype w, by the relative frequencies,

plelk) = 1/N{k) > a.(x;W,p=10.3).
{xek}

Here, N (k) is the total number of data vectors x belonging to phoneme class k. a,(x;W.x=p) is
given by (2).

Figure 2 shows the conditional probabilities for each prototype 1-5 as a function of the 52 phoneme
classes. The horizontal lines indicate the borders between five phoneme groups: stops, fricatives,
nasals, semivowels and vowels. The dots mark the prototype r/, where p(r|k) reaches the maximum
value for a given phone class k. Figure 2 confirms the results of Figure 1. The five prototypes
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provide a rough classification of the various phoneme groups. Fricatives are associated to prototype
1, whereas stops and nasals are mainly associated to prototype 4 and 3, respectively. Interestingly,
semivowels and vowels are not associated to a certain prototype. But a closer investigation of Flgure
2.2, 2.3 and 2.5 reveals a coarse seperation of semivowels and vowels into groups of low, middle and
high pitched voice, respectively.
4. CLASSIFICATION RESULTS

To train the GRBFN, we first perform a hierarchical VQ procedure on the training set of 10° phone
templates using a codebook of 700 codebook vectors. We then calculate the output weights con-
necting the hidden layer with the 52 output neurons by solving Equation (3). An optimal value of
the width p is obtained by maximizing the overall recognition accuracy on the training set.
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Figure 3: Classification results of the GRBF-Network. Confusion matrix for 52 phoneme classes.

The 52 x 52-confusion matrix in Figure 3 illustrates the performance of the network on the set of
3.5 10* test phones. The rows show the true membership to each phone class, whereas the lines show
the membership classified by the network. The area of each dot in Figure 3 is proportional to the
number of data vectors. The dashed horizontal and vertical lines mark the boarders between various
phone groups. A perfect classifier should show up in a confusion matrix with a diagonal structure.
However, due to misclassification there also exist off-diagonal elements. From the confusion matrix we
calculate the overall performance for speaker-independent phone classification. Table 1 summarizes
the results on the training and the test set.

classes 52 39 5 groups || top-3
train | 63.1% |67.2% | 87.6% | 87.6%
test | 622% | 665% | 87.0% | 86.7%

Table 1: Classification results on the training and the test set.

We obtain a recognition accuracy of 63.1% on the training set and 62.2% on the test set for 52
different phone classes. Combining phone classes by a scheme first proposed by Lee and Hohn (1989)
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we obtain for the remaining 39 phone classes a recognition accuracy of 67.2% on the training set and
66.5% on the test set. A coarse classification of five phone groups in 'stops’, ‘fricatives’, 'nasals’,
'semi-vowels’ and ‘vowels’ yields a recognition accuracy of 87.6% on the training set and 87.0% on
the test set, respectively. The fast row in Table 1 shows the "top-3" recognition accuracy on the
set of 52 different phone classes. Here, a phone is considered to be "correctly ciassified”, if the
output value of the true phone class is amongst the three largest values. The top-3 recognition
accuracy is 87.6% on the training set and 86.7% on the test set. Note, the classifier has a very good
generalization. The performance on the test set shows a negligible short-cut of less than one percent
as compared to the training set. The presented speaker-independent single phone classifier clearly
outperforms other neural network approaches (Anderson, 1989) and is reasonable as compared to
classical Hidden Markov Model approaches (Lee and Hohn, 1989, Rathinavetu and Deng, 1996 and
Ruxin and Jamieson, 1996).
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