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Abstract

Using phoneme-based Gaussian mixture as a VQ codebook in DHMM speech
recognition system (PBDHMM) is an efficient way to improve the system perfor-
mance. This paper compares the performances of PBDHMM system with that of
the well known continuous HMM system for isolated word recognition task. The
results shown that PBDHMM system obtained better results than CHMM system,
especially for phoneme-distinct data.

INTRODUCTION

A discrete hidden Markov model (DHMM) speech recognition system is a combina-
tion of vector quantization and hidden Markov modeling. The DHMM speech recognizer
was first successfully used for a speaker-independent isolated digit recognition task by
Rabiner and his colleagues in 1982 [5]. After that it was widely employed for various
speech recognition tasks, not only for the small vocabulary isolated word recognition,
but also the large vocabulary continuous speech recognition such as the SPHINX sys-
tem [3]. The main advantages of DHMM are its concise concepts and low computational
costs. The computational simplicity arises from the fact that the calculation of the out-
put probability for each observation vector of a test utterance is displaced by consulting
the probability from the existed models in which store all possible output probabilities
for the finite observations, which are from the vector quantizer.

There is an important disadvantage of an DHMM-based speech recognition system.
It is that the use of a VQ codebook to represent the speech spectral vectors creates an
inherent spectral distortion in representing the actual analysis vector. Since there is only
a finite number of codebook vectors, the process of choosing the “best” representation
of a given spectral vector is equivalent to quantizing the vector and leads to quanti-
zation error. This is further worsened by an inappropriate quantization or clustering
of the data. As the size of the codebook increases, the size of the quantization error
decreases. However, with any finite codebook there will always be some nonzero level of
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quantization error. Many researchers have realized this problem and tried to use various
techniques to reduce the effects of quantization error or inappropriate clustering. For
example, Lee et al used a method called multiple codebook integration in the SPHINX
system for continuous speech recognition [3]. In this system a set of three VQ codebooks
were generated from three different speech features, bilinear-transformed LPC cepstrum
coefficients, differenced bilinear-transformed LPC cepstrum coefficients, and a weighted
combination of power and differenced power. Nishimura and Toshioka reported a 50%
error reduction comparing with the conventional VQ in a small vocabulary isolated word
recognition task by using a so called multi-dimensional multi-labeling technique [4]. The
similarity of this technique to Lee’s method is that it also uses multiple speech features
to generate the multi-codebook. However, instead of the best match vector (the near-
est codeword) in the codebook as the output, Nishimura’s vector quantizer cutputs few
best matched codewords for each input vector from each codebook and the outputs are
decided by a predetermined threshold. Another technique is based on the probability
density function (pdf} smoothing in the HMM parameter estimation stage [6]. It can be
seen as a compensative technique for the information loss caused by conventional VQ.

Some researchers assume that the inappropriate clustering problem is caused by
serious quantization distortion [2, 3, 5]. However, this is not necessarily the best expla-
nation. From the distortion point of view, one could reduce the quantization distortion
by increasing the quantization level, ¢.e., codebook size of VQ. When the quantization
level or codebook size — oo, the quantization distortion — 0. This means that the
larger the codebook size is, the better performance the recognizer has. However, in a
DHMM speech recognition system with a conventional vector quantization strategy, this
does not always work. For example, in a small vocabulary isolated word recognition task,
say the 10 digits, a codebook with 64 or 128 codewords may give the best recognition
result. When the codebook size is increased to 256 or more, the quantization distortion
must be smaller than before, but the recognition result may be worse. The reason is that
the speech signal space is inappropriately classified. In fact, the speech space consists of
finite clusters which certainly reveal some statistical characteristics.

Investigations have shown that the speech signal space consists of finite clusters
which represent phoneme data sets from male or female speakers and reveal Gaussian
distributions [1]. In our speaker-independent isolated word recognition system, we used a
substitute vector quantization strategy, phoneme-based Gaussian mixture VQ codebook,
instead of the conventional V() algorithm, and obtained significant improvements of
system performance.

In a phoneme-based Gaussian mixture codebook, each phoneme of each sex of speak-
ers in the training sequence is represented by a Gaussian codeword. This means that we
treated the phonemes as data classes in the clustering produced by VQ. The codebook
size, however, is normally larger than the number of phonemes of training sequence. The
reason is that the phoneme space is only a subspace of the speech signal. In other words,
the speech signal space includes not only the phonemes, but also some detailed sound
between the phonemes and silence or background noise. Then we generated a Gaus-
sian mixture codebook in which some of codewords were determined by the individual
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phonemes and others by the rest of training sequence.

In this paper we compare the performance of the continuous hidden Markov mod-
eling (CHMM) system and the phoneme-based VQ discrete hidden Markov modeling
(PBDHMM) system for isolated word recognition. Two databases were used for the
comparison with better results obtained by the PBDHMM system.

PHONEME-BASED VECTOR QUANTIZATION

Investigations have shown that the distribution of phonemes reveal a Gaussian-like
distribution [1]. Normally a vowel or a consonant can be described by one Gaussian while
a diphthong is represented by two partially overlapped Gaussians. In fact, according to
our observations, most phonemes occupy separate or partially separate sub-spaces, and
the consonants show more separation than the vowels. Another interesting observation
is that the same phoneme data from different sex speakers occupy partially separate
sub-spaces. Based on these observations, we know that each phoneme data class could
be treated as an affine sub-space in the first step modeling, vector quantization. In our
previous work, we proposed an improved training procedure for the speech recognition
system in which the phonemes were manually extracted from the training sequence and
used to form the Gaussian models individually. We generated a Gaussian model for
each phoneme and used these Gaussians to initialize the training procedure of the EM
algorithm which was employed to produce a Gaussian mixture model for the training
speech data.

Because the phoneme space is not the whole speech space but only a subspace, we
should generate a Gaussian mixture model which not only represents the the individ-
ual phonemes, but also the detailed sound between and out of the phonemes, and also
the background noise. For this VQ training procedure, we run the EM algorithm with
only the E step for the fixed Gaussians. This means that the clustering procedure only
changes the mixture weighting parameters, but does not change the means or the co-
variance matrices of the fixed Gaussians. The remaining Gaussians in the codebook are
generated depending on the probability distribution of speech data from the whole train-
ing sequence. After the EM training procedure, the training sequence is classified as N
clusters which are represented by the N Gaussians in which M Gaussians (M < N} were
generated individually from the M phonemes extracted before. These Gaussians more
accurately describe the distribution characteristic of the phonemes in the speech signal
space. Therefore better classification of speech space is achieved and the performance
of whole recognition system is improved. The system was evaluated for isolated word
recognition task.

DATABASES AND SPEECH FEATURE PREPARATION

Two English databases were used for the training and testing. The first database is
the Studio Quality Speaker-Independent Connected-Digits Corpus (TIDIGITS) from the
National Institute of Standards and Technology (NIST) in the USA. The data is sampled
at 20 KHZ sampling rate and digitized to 16 bit resolution. A subset of the database

566



used in our experiments comprised a small vocabulary of eleven isolated digits (from
zero to nine and oh) spoken by 112 speakers (55 males and 57 females) and test data
spoken by 113 different speakers (56 males and 57 females). There are 1232 utterances
in the training sequence and 1243 in the testing sequence. The second database is
the TI46-word Speaker-dependent Isolated Word Corpus from the same organization
as above. The database comprises 46 isolated words, 10 digits, 10 computer command
words, and 26 English alphabets. The data is sampled at 12500 HZ and digitized to 14
bit resolution. Here we used only a subset of the 26 alphabets. There are 16 speakers
(8 male and 8 female) in the database and each word was repeated 26 times by the
speakers. The first 10 repetitions were used as the training set and the remaining 16
as the testing set. There are 4160 utterances in the training sequence and 6656 in the
testing sequence.

The feature extraction procedure for both databases is the same. The FFT of the
speech data was computed every 10 ms using a 25 ms Hamming window. The FFT
coefficients were binned into 12 Mel-spaced values to produce 12-dimensional feature
vectors corresponding to the frequency range from 60 to 5000 HZ. The adjacent frequency
bands have 25% overlapping.

EXPERIMENTS AND RESULTS

According to our observation that the phoneme data from male and female speakers
occupy different regions, the training sequence was divided into two parts according to
the speaker’s sex. The phonemes were manually extracted from the speech waveforms
for the training sequence. We extracted 19 phonemes from 11 isolated digits of TIDIG-
ITS for each'sex and 24 from the 26 alphabets of TI46(alphabet) for each gender. In
the training procedure we estimated the parameters of two Gaussian models for each
vowel or consonant, one for the data from the male speaker and one for female’s. For
each diphthong data two mixture models of two Gaussians were produced by the EM
algorithm. This is based on the observation that the diphthong data look like two over-
lapped Gaussian clusters. For the all phonemes processed, we had 44 Gaussian models
for TIDIGITS and 58 Gaussian models for TI46(alphabet).

Suppose we have M Gaussian models from the individual phonemes. In this case,
1t is reasonable that the code book should have more elements than M because of the
presence of background noise, silence between the speech utterances, as well as some
detailed sound not included in the phoneme extraction. In other words, the phoneme
space is not the whole speech space, it is a subset of the observation sequence. Thus the
EM algorithm was used to generate a Gaussian mixture model which has N (N > M)
Gaussians for the whole training sequence. The previously obtained M Gaussian models
were used to initialize the EM training procedure. The means and covariance matrices
of the M Gaussians were fixed in the estimation iterations but the probabilities {or
weights) of the M Gaussians were recalculated depending on the probability distribution
of the observation sequence. The rest of the N-M Gaussians were also produced in the
EM training procedure. A set of phoneme-based Gaussian mixture codebooks with
different codebook size were generated and an optimization procedure was applied to
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Database | TIDIGITS | T146(alphabet)

CHMM 97.8T% 95.62%
PBDHMM 98.3% 96.56%

Table 1: The accuracy rates of English alphabet recognition.

the codebooks [10]. Finally, we had an optimized codebook with 81 codebook elements,
i.e., N=81.

A hidden Markov Modeling system with continuous Gaussian mixture density was
employed for the comparison. Both the PBDHMM and CHMM speech recognizers used a
5 states left-to-right constraint model structure described by Rabiner at {5]. A Gaussian
model with full covariance matrix was used for each state each recognition model in
the CHMM system. This means that there are total 55 full covariance matrices for
TIDIGITS and 130 for T146(alphabet). Table 1 shows the experimental results.

CONCLUSIONS

In both the cases, PBDHMM system obtained better results than CHMM system.
In the TIDIGITS case, the recognition accuracy gain is 0.43%. In the TI46(alphabet)
case, the recognition accuracy was improved by 0.94%.

In PBDHMM system we generated the mixture of 81 Gaussian models as the code-
book for the two databases. While in the CHMM system 55 and 130 Gaussian models
were employed for the two databases respectively. Because the main calculation cost in
the recognition step is that for the log-likelihood of each input utterance with the Gaus-
sians, we assume that the calculation complexity of the recognition system is directly
proportional to the number of Gaussian models it used. As such, the calculation cost of
PBDHMM system is higher in the TIDIGITS case but is lower in the TI46(alphabet)
case than the CHMM system.

Comparing the results not only with the CHMM system, but also with current re-
sults for this type vocabulary, (about 99.9% for 10 digits recognition and 95.5% for
36 alphabetdigits recognition) {11], we can say that the phoneme-based Gaussian mix-
ture codebook for a DHMM speech recognition system is an efficient method for the
recognition of phoneme-distinct data such as alphabets.
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