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ABSTRACT - In this paper we present a new spoken Japanese digits recognition system
using LVQ ( Learning Vector Quantization ). LVQ has very simple algorithm and generates
some good reference vectors for DP ( Dynamic Programming ) matching. Our overall sys-
tem has two characteristics. One is that the learning and recognition systems have two
maodes which are for vowels and consonants. The other is that the vowel recognition system
predicts consonant label. In our two recognition systems the vowel recognition system seg-
ments vowe! part and recognizes vowel label. In the consonant recognition system, actually
recognized label is compared with predictive label. Each system { vowel and consonant
recognition system ) generates series of label Japanese digit. According to the experiment,
our recogniyion system has good performance.

INTRODUCTION

Conventional recognition system with DP matching has to have many reference vectors. We attempte to
generate a smaller number of reference vectors with LVQ. LVQ is often used for phenomena recognition
and it has high performance. But it often recognizes wrong phenomenon near correct phenomenon point
when it is used continuously. So it is necessary to ascertain whether it is wrong phenomenon. Our

system recognizes vowel and consonant separately. The vowel with a few category is first recognized.
To improve the recognition rate for consonants, our recognition system next segments vowel part from
other parts. In the consonant recognition system, the consonant to be recognized is predicted by the
phoneme sequence of each digit and vowel which has already been recognized. The consonant phe-
nomenon is recognized based on the predicted and actually recognized phenomena.

LVQ ( Learning Vector Quantization )

LVQ can generate some good reference vectors from many vectors and its algorithm is very simple.
Then we describe the learning rule of LVQ as following:

First we calculate Euclidean distance for all reference vectors m;(t) and then the closest reference vector
me (1) to the input vector X(t) by Eq.(1).
Ihe(t)-me (tff=min{x(t)-miojf} )
Let the input vector x(t) belong to category Sy and the closest reference vector mg(t) to x(t) belong to
Sg. If Sy is the same category as Sg ,m(t) is moved closer to x(t) by Eq.(2)
me (t+1)=me (H)+at){x(t)-me (1} @
where the function a(t) ought to be a monotonically decreasing function of time (O<a(t)<1). If Sy is a

category other than Sg, mi(t) is moved away by Eq.(3).
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me(t+1)=mg (t)-alt){x(t-mg 1)} 3)
All reference vectors excepted m;(t) stay there.
mj{t+1)=m;(t) 4
Thus LVQ moves the veciors that belong to same category closer and the vectors that belong to other
category away. Then it makes clearly bound surface among classes.

SPEECH ANALYSIS
Speech signals are sampled at 10 kHz and pre-emphasized by (1—2'1). Each spoken digit is hamming-

windowed and 256-points FFT is computed every 8msec. Mel-cepstrum coefficients { 16 sections ) are
normalized by each frame.

RECOGNITION SYSTEM
Segmentation( Vowel Recognition )
We search voiced part using speech energy E(l) as shown in Eq.(5) which is greater than N ( Fig.1).

" X(i)?
E()= ;;— (5)

1:Frame x({t):speech
In the voiced part, the input vector, 3 X 16-dementional vector, for LVQ is generated in each vowel part (
stable part ). Then it is learned by LVQ and generates some reference veciors. Their reference vectors
are applied to vowel label, /a/, i/, /u/, /e/ and fof, with DTW ( Dynamic Time Warping ) in whole of vowel

parts. Each label dj is compared with dj,, j (i=1,2,--) separately. If the total number of different labels

Label /e/

Figure 1. Voiced part ( doted fine: en- Figure 2. Segmentation { vowel recogni-
ergy ) tion )
is greater than N and (j-i) is greater than M, dj is recognized ( Fig.2 ).

Consonant recognition

Our system can recognize the conscnants used in Japanese spoken digits ( Table.1 )../2/,/t/ /chil /n/ J/./
11/ and /kyu/. The input vectors are generated by previous 7 frames to vowel part. When the



same label dj is generated N times in M frames, the label Dj is nominated as

consonant label. In many cases, the generated consonant labels are plural and different. Their nomi-
nated consonants are compared with predicted consonant as following: Our system predicts a conso-
nant label previous to the vowel one, when our system segments a speech signal. For example, when /

a/ is recognized, predictive consonant labels are /s/ and /n/ ( see Table.1 ). If the label Dj generated by
DTW belongs to the predictive consonant labels, the fabel Dj is recognized as correct label. if itis not so,

the vowel label ( segmentation ) has been recognized uncorrectly.

0 ZERO 1 ICHI 2 NI 3 SAN 4 YON

5 GO 6 ROKU 7 NANA 8 HACHI 9 KYuu

Table 1. Japanese digits

0: zero
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Figure 3. Consanant recognition example ( zero )
RESULT

We experimented for the speech except the unvoiced part and the vowel part to be too short for our
system.

Vowel

»
[
o

Rate [%] 97.1 100 95.0 100 100

Table 2. Vowel recognition resuit

The result of vowel recognition ( Table 2 } shows that our system segments correctly and assigns correct
labels. The label /u/ is often inseried on the semivowel part. In consonant recognition { Table 3 } labet /y/
and /r/ reduce recognition rate because of /u/ inserted. The second /n/ of 'NANA is stable phenomenon
and /n/ used to learning system is a transition part from the consonant to the vowel. For this reason /n/
reduce recognition rate, too. The digit recognition result { Table 4 ) has high performance because our
system estimates a correct digit from the sequence of labels generated in which phoneme change is
considered.
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z r chi n s y g k h kyu

F;:‘]e 100 | 833 | 929 | 857 | 900 | 900 | 100 | 900 | 100 | 818
Tabie 3. Consonant recognition result
0 1 2 3 4 5 6 7 8 9
R[;t]e 83.3 100 100 0.0 83.3 100 83.3 80.0 100 81.8
0.
Table 4. Japanese digit recognition result
CONCLUSIONS

in the paper we have presented a new method for the spoken Japanese digits recognition using LVQ.
The proposed method reduce the number of reference vectors for DTW, and sequence label ( like digit
letter ) and vowel recognition predict the consonant. The experimental resuits have shown that this
method is effective for word recognition.
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ABSTRACT

The digit-specific feature extraction approach extracts distinguishing features of spoken dig-
its in order to use a smaller amount of data to represent the digits. This reduced represen-
tation of the distinctive acoustics of the digits was evaluated in an isolated digit recognition
task using a multi-layer perceptron neural network architecture. The acoustic-phonetic de-
sign of features for English digits is described as is the means to extract them from spoken
utterances. The results of a recognition system based on this feaure set are presented for
the conditions of multi-speaker dependent and speaker independent testing. The data set
for this study is the ten isolated digits ‘zero’ to ‘nine’ spoken by three male and five fernale
Australian speakers.

INTRODUCTION

The selection of the best parametric representation of acoustic data is an important task in the design of
any speech recognition system. The standard approach is to use all analysis frames that are available,
but it is feasible to reduce the complexity of the system it only those frames of the reference utterance
which are distinctive within the overall utterance set are compared.

In this paper, a digit-specific feature extraction (DSFE) approach is exploredfor the mutti-speaker Isolated
Digit Recognition task. The novel DSFE approach is based on the philosophy that comparison is required
only at such distinctive points of the utterance. This approach avoids the computationally expensive
dynamic time-warp procedure.

The phonetic structure of a spoken English digit consists of at most two voweis with maybe initial, middle,
and final consonants. All these digits, with the exception of “eight”, have an initial consonant. Although
there are many different characteristics existing in the consonants, they ail can be classified as either
“voiced” or “unvoiced” (Ladefoged, 1975). Therefore, a major phonetic distinction between the initial
consonants of English digits is between voiceless and voiced onset. Simitarly, there are two broad
classes of vowels: monophthongs and diphthongs. A maijor distinction between the vowels is between
monophthongat and diphthongat vowel types.

A study on digits by Rudnicky et al (1982) showed different recognition results using the first halves
and the second halves of each ufterance. Their result indicated that the first halves give a better
recognition score than the second halves. Our prefiminary studies (Zhang et al, 1990) showed that
cepstral coefficients which were selected at the peak energy can provide important information for digit
discrimination. In our data this peak always existed in the first haif of each digit. On the basis of these
studies, it was decided to select features from just initial consonants and vowels so that the least amount
of speech data could be used to represent the distinguishing features for digits.
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Figure 1: Energy and zero-crossing density profiles for digit “five”

SELECTION OF ACOUSTIC-PHONETIC FEATURES OF DIGITS

A temporal feature detector was used to detect several key-frames (KFs) from the speech signals of
isolated digits using acoustic-phonetic rules. These rules invoive the classification of spoken digits in
terms of voiced or unvoiced onset and the diphthongisation of the initial vowel. The peaks and valleys
of the energy-time profiles were detected in order to locate KFs which relate to the distinctive vocalic
nature of each digit, and zero-crossing rate was explored to locate a KF to detect the voicing status of
the onset. A small number of frames around these detected KFs were chosen in order to include enough
information to fully encompass the selected features.

Selection of Key Frames to represent vowels

it is well known that the energy time-contour of a speech signal is a valuable parameter to indicate
the temporal location for the extraction of input features in speech recognition (Denes, 1974; Zue and
Schwartz, 1980; Rabiner et al, 1984; Lai et al, 1987; Burr, 1988). In the context of isolated digit
recognition, Burr (1988) showed a good result in his system using a simple feature extraction approach
in which only energy was used in the selection of input features for a neural network. The strategy
adopted in his approach was to select a frame is located at the energy maximum of the spoken utterance

and two additional frames located before and after at a fixed fraction of the maximum energy.

In preliminary experiments (Zhang et al, 1980), an approach similar to that of Burr (1988) was used. A
group of three frames were chosen with one frame at the energy maximum and two frames before and
after which were closest to half this energy. These experiments showed that the maximum energy from
each digit was located centrally over the vowel for a monophthongal digit, or the first vowel quality of a
diphthongal digit. This measure was therefore used in the DSFE approach to locate the first key-frame
(KFp) (Figure 1 and Figure 2) within each digit.

In addition, it has been found that for the eight speakers examined, two peaks often ocour in the energy
time-contour parameter where the spoken digit contains a diphthong. This feature was represented in
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