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ABSTRACT - This paper compares four modulated wavelets for speech recognition. The
medulated wavelets are based on well understood window functions. These are the Han-
ning, Hamming, Blackman and Gaussian windows.The wavelet parameterisation of
speech using each of the above mother wavelets is applied to a multi-speaker E-set dis-
crimination task The results show that the Gaussian and the Blackman windows give a
slight improvement in recognition performance.

INTRODUCTION

Wavelets have been shown to be useful front end processors for speech recognition systems for
discriminative tasks. These spaech recognition systems have been based on Hidden Markov Models
(HMMs) (Favero and King, 1994) and neural networks (Favero and Gurgen, 1894; Kadambe and
Srinivasan, 1984, Szu et. al. 1992). Discriminative tasks have been chosen for use with wavelet parame-
terisations to show that improved time and frequency resolution will better parameterise these difficult
areas of speech for speech recognisers.

The choice of mother wavelet can determine:

. the number of wavelets to parameterise the signal,
o the sampling rate of the wavelet ransform,
° the types of features that are 16 be extracted.

The modulated Gaussian was used by Morlet (1982} in his work on Geophysics. Modulated wavelets
have been used in speech analysis (Basile at. al., 1992) and music analysis (Kronland-Martinet, 1989).
Application of a modulated Hanning window to speech recognition was successful in improving speech
recognition performance over MFCC.

This paper reports the resulis of comparisons of four modulated wavelets when applied to a discrimina-
tive speech recognition task. The four window functions that the wavelets are based on are outlined and
how the wavelets are produced.

WAVELET THEORY

Wavelet theory is based on generating a set of filiers by dilation and translation of a generating wavelst
{mother wavelet). The mother wavelet is usually a band-pass filier. All of the generated wavelets are
scaled versions of the “mother wavelet”. Increasing the scale of a wavelet will increase its time duration,
reduce the bandwidth and shift the centre frequency fo a lower frequency value. Decreasing the scale
does the opposite.

A set of wavelets is generated from any defined mother waveiet \P(t) by:

1
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The wavelets are contracted (0O<a < 1) or dilated (a > 1) and are moved over the signal to be analvsed
by time step b. Contractions and dilations scale the frequency response of the generating wavelet to
produce a set of wavelets that span the desired frequency range. The generated set of wavelets can be
considered as a filier bank for speech analysis.
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The continuous wavelet transform (CWT) performs the inner product (correlation) of a'signal s(t) with
all scales and dilations of a mother wavelet. The GWT will produce a two dimensional output similar
to a spectrogram. The CWT is defined as (a> 0, bis real):

CWT (b, a) = %J"s(t)‘l’(i;—!?)dt
a

The discrete wavelet transform (DWT) is the CWT sampled at a defined set of points. The DWT of a
sampled signal s(k} is given by (i, k are indexing integers):
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The scaling value is made discrete by i being discrete. The DWT computes data points an octave
space apart on a dyadic grid if a = 2 since the scale values would be -2, -1, 0, 1, 2, 4, 8.... (A dyadic
grid has half of the number of data points at each successive lower octave (Daubechies, 1992; Rioul
and Vetteri, 1991). The value of a can be chosen such that more than one wavelet coefficient per
octave is generated (voices of an octave). If the initial generating wavelet is defined appropriately
then sub-octave resolution can be accommodated. This can be achieved by choosing:
1
o = o numberOfvoices)

The sampled CWT (SCWT) is a variation of the DWT. This produces frame synchronous data
(redundant at lower frequencies) but retains the features that are offered by the wavelet transform.
The sampled CWT is given by:
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The wavelet ransform in this paper is calculated using the SCWT. The SCWT is modified to reducs
the computational load. Coefficients off the dyadic grid ars filed with adjacent coefficients thai fie on
the dyadic grid.

A pisce-wise mel scale is used as the frequency scaling operation. This scale is logarithmic above
1000Hz and linear below 1000Hz. There are 12 wavelets above 1000Hz and 6 below 1000Hz. Thus
the wavelet transform generates 18 coefficisnts per sample, every 2ms.

MODULATED WAVELETS

Morlet (1982) used the modulated gaussian in his work in geophysics. Since then, modulated win-
dow functions have become popular wavelets because they have desirable time-bandwidth prod-
ucts. This ensures fhe best possible time and frequency resolution for a given task.

Modutation of window functions allows the control of the centrs frequency and bandwidth of the
wavelet. The four window functions examined here have been studied extensively and their fre-
quency responses are well known. They have suitable frequency responses and time duration prop-
erties for the present application. Different modulated window functions may affect recognition
performance due to the different frequency and time responses for the data in a particular task. The
four window functions used are cutlined below (Oppenheim and Schaler, 1975).

Hanning

The Hanning window has been used in wavelet analysis (Basilo et. al. 1892) and for speech
recognition in previous work (Favero and King, 1993,1994; Favero and Gurgen, 1994). The peak
side lobe is -31db below the main fobe. The hanning window is given by:
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Hamming
The Hamming window is widely used in MFCC calculations. The peak side lobe is -41dB below the
main lobe. The Hamming window is given by:
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Figure 1:Plot of the window functions in the time domain

Blackman

The Blaclanan window is given by:
2nn
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The peak side lobs is -57dB below the main lobe.

Gaussian

The Gaussian window is a widely used windowing function. The Gaussian function has the same
shape in both the time and frequency domain. The Gaussian function has the best time bandwidth
product of 1/4r. The Gaussian function is given by:
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Figure 1 shows that the Hanning and Hamming windows have a similar shape as do the Gaussian

and the Blackman windows. Experimental results for these two pairs of windows are expecied to
correlate.

EXPERIMENT

A discrimination task is chosen for the experiment based on the NIST Tl-46 word database. This data-
base contains 16 speakers and each speaker repeats each word 26 times. Ten of the words are used
for training and the 16 remaining are used for testing. The database is down-sampled to 8kHz. The
leading and trailing siience is removed from each utterance prior to performing the wavelet transform.

We have chosen the “E-set” (b, ¢, d, e, g, p, 1, v, z) because the difficulty in discriminating the initial
consonant makes this a difficult multi-speaker recognition task.
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The experiments described here use continuous density HMMs with 5 states and 5 weighted mix-
tures (Rabiner, 1989).

The wavelet transform is performed with each of the mother wavelets. The lengths of the mother
wavelets is set to 32 samples (4ms). The gaussian standard deviation is set o 7.5 samples which
produces a gaussian window near 32 samples (this depends where the cut-off is determined).

RESULTS
The results are shown in the following table.

Hanning Hamming Blackman Gaussian
Training 78.4 76.6 7.0 80.4
Testing §7.5 66.2 68.5 - 685

Table 1: Recognition performance as a percentage comect

DiSCGUSSION

The results show that the Blackman and Gaussian windows performed 1 bafter that the Hanning
window and 2.3% better than the Hamming window. The improvement in performance is not signifi-
cant, nor are the differences between the window functions. The resuls imply that changes 1o the
mother wavelet can affect recognition performance. These small changes could be amplified if the
output of the wavelet iransform is passed through a post-processor {such as Principal Components
Analysis).

The Blaclanan and Gaussian windows have a similar shaps and the recognition performancs corve-
sponds with this similarity. The window shapes had a betier time resclution than that of the Hanning
and Hamming windows. This seems to indicate that mother wavelets that have a betier time resolu-
tion should provide slight improvements in recognition performance.

Despite the Hanning and Hamming windows being similar there was 1.3% difference in recognition
performance. The Hamming window has a step at the edges of the defined time domain. The fre-
quency impacts of this may have affected the recognition performance.

While the Gaussian and the Blackman modulated wavelets performed equivalently, the Blacienan
window has several features that make it a valuable wavelet. These include:

° finite time duration,

o time resolution equivalent {o the Gaussian.
These factors maks the Blackman window particularly suitable for wavelst paramsterisation.
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A HIERARCHICAL APPROACH TO PHONEME RECOGNITION OF
FLUENT SPEECH

David B. Grayden and Michael S. Scordilis
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ABSTRACT - An overview is presented of a hierarchical phoneme recognition
system which performs the task in a number of steps: segmentation, manner of
articulation classification and then place of articulation classification. A combi-
nation of knowledge-based techniques and neural networks are used within these
modules.

INTRODUCTION

Automatic speech recognition (ASR) systems designed to handle multiple speakers, a large
vocabulary and a large grammar must be able to recognise speech at the lowest level, typically the
phonemic level, in order to achieve the required versatility. The phoneme recognition approach
has proved popular for building many of the large vocabulary systems in existence {Waibel &
Lee, 1990). Information derived from this basic level is used at higher levels of the recognition
process such as word selection and syntax and semantic analyses (Lee, et. al., 1990, Sagayama,
et. al., 1992, Deller, et. al., 1993).

Fluent speech is composed of sequences of words with little or no pauses between them. Since
this is the natural form of speech for humans, it is preferred to uttering connected isolated words.
However, when speaking fluently, the boundaries between words become difficult to locate as
words blend into one another. Coarticulation is also more prevalent within words as well as
between words. This leads to a sequence of phonemes that is different to that produced in
isolated word speech, but human listeners are still able to understand without difficuity.

A hierarchical approach has been used in this system for recognition of phonemes in fluent speech.
The tasks performed by the recogniser are divided into modules which relate to different acoustic
and phonetic processes present in the utterances thus restricting the classification tasks that
must be performed. The modular approach also allows flexibility in using different techniques
to perform each task. Bayesian classifiers, neural networks and knowledge-based techniques are
used where they can provide the best results. This method produces a versatile system that
may be altered and adjusted as better classifiers are developed.

SYSTEM FRAMEWORK

An outline of the phoneme recognition system is shown in Figure 1. The first processing opera-
tion on the speech signal was the extraction of features relevant to the recognition process. In
this system, the features were: 16 mel-scale filterbank energies, low and high frequency energies
and a ratio of low frequency to high frequency energy.

Each sentence of speech was then segmented into phonemes with careful attention paid to
accurately locating obstruent and sonorant regions. This was performed using a combination of
Bayesian classifiers and Time-Delay Neural Networks (TDNNs) (Grayden & Scordilis, 1994).

"The next stage in the system classified the phonemes into manner of articulation classes and, fi-
nally, determined the place of articulation of each phoneme. Both of these stages were performed
by TDNNs (Grayden & Scordilis, 1993).
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