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ABSTRACT - This paper considers the problem of robust parametric model es-
timation and classification in noisy acoustic environments. Characterisation and
modelling of external noise sources is in itself an important issue in noise compen-
sation. The techniques described here provide a mechanism for deriving parametric
models of acoustic backgrounds along with the signal model so that noise com-
pensation is tightly coupled with signal model training and classification. Prior
information about the acoustic background process is provided using a maximum
likelihood parameter estimation procedure. A maz noise model is defined for use
in the cepstral domain. We describe experimental evaluation of the benefits gained
by applying this approach to text-independent speaker verification. With short
speech utterances and various noise environments, useful improvements in speaker
verification performance were obtained.

INTRODUCTION

The growing need for automation in complex work environments and the increased use of
voice-operated services in many commercial areas have motivated recent efforts to translate
laboratory speech-processing algorithms to practical use. In the area of speaker recognition,
the TRUST Project is achieving good results in relatively constrained environments with
short spoken interactive commands (Zhu et al., 1994a and Chen et al., 1994). Normal
workplace environments have various forms of extraneous noise, however. Speaker verification
performance normally deteriorates, often dramatically, in such environments. One of the
biggest obstacles to the practical use of speech processing equipment is the presence of
acoustic moise. In many applications, acoustic noise can be nonstationary and may depart
considerably from traditional broadband or impulsive noise models.

A typical speaker verification system is shown in Figure 1. There are three main stages at
which noise compensation may be employed: (i) in the recording environment, which can to
some extent be controlled by physical adjustment of microphone, for example; (i) before the
feature extraction stage, where signal processing techniques may be used; and (iii) during the
comparison stage, in a way that will be highly dependent on the algorithms used.

The first step in reducing the effects of such noise is to use a noise-cancelling microphone
which takes the difference signal between two matched transducers (one facing toward and the
other facing away from the speaker). The next step is to develop a comprehensive approach to
dealing with the effects of acoustic noise in speech processing applications. We have discussed
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Figure 1: Incorporation of noise processing in the speaker verification system

this issue in Tang et al. (1994). This paper concentrates on the third option: the comparison
stage.

Our overall aim is to develop a formalism which integrates models of signal and background
and which has potential applications to a variety of signal classification problems. Rose,
Hofsteiter and Reynolds (1993) proposed an integrated model that exploits prior information
about background noise to obtain more robust estimates of the parameters of Gaussian mix-
ture classifiers. Prior information about background sources was integrated by providing a
mechanism for integrating a broad class of statistical models of background directly with the
model for the underlying signal. Their integrated model was shown to be effective for speaker
identification in noisy acoustic environments.

in this paper, we describe a mechanism for deriving parametric models of acoustic backgrounds
along with the signal model so that noise compensation is tightly coupled with noise and
signal models during training and classification. Gaussian mixtures are used because of their
ability to provide mathematically tractable approximations to arbitrarily shaped underlying
densities. They have demonstrated good performance as parametric speaker models in speaker
verification studies. The techniques used in this paper have been applied to text independent
speaker verification from short spoken interactive utterances corrupted by various forms of
environmental noise.

SPEECH MODELLING WITH AN ACOUSTIC BACKGROUND

It is often the case that the only available observations of a signal source are taken in a noisy
environment. [t may further be the case that signal classification is to be performed in an
environment with dissimilar background noise characteristics. In such applications, it would
be desirable to be able to separate the effects of the noisy acoustic background from the signal
when estimating signal model parameters and to estimate the effect of combining the signal
model with alternate noise models.

If the actual linear signal z; is corrupted by additive background noise y; in the time domain
and the parameter vectors are log filterbank channel energies, X = log(z) and Y = log(y),
where z and y denote the energies of =, and y,, respectively, then ‘one can approximate the
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noise process using a maz operator (Nadal, Nahamoo & Picheny, 1989)

log{z + y) = log(maz(z,y)) =~ maz(X,Y"). (1)

The speech features used in our experiments were mel-frequency cepstral coefficients (MFCCs),
computed as

K
MFCC: = 3 Xycosli(k - %) il i=1,2,-1, @)

where I is the number of cepstral coefficients, K is the number of triangular bandpass filters
(Davis & Mermelstein, 1980), and X, represents the log-energy output of the kth filter.
Therefore, our speech features are a linear combination of log filterbank energies. If we
assume that the background acoustic noise is independent of the speech signal, we can use
the maz noise model in the cepstral domain.

The philosophy of the proposed approach is as follows: if we have a prior: knowledge of the
acoustic background, we can model the noise in such environments, and use the noise model
along with the speech model in the speaker verification stage for noise compensation. First, the
speech and noise models were trained with clean speech and pure noise respectively. The model
parameters of the mixture-Gaussian VQ were estimated with the method described by Zhu et
al. (1994b). In the speaker verification procedure, the speech features of input noisy speech
were compared with the speech and noise models. Frame-based speech and noise likelihood
scores were input to the maz operator. The claimed speaker’s overall likelihood score was
calculated by accumulating scores for those frames which had speech scores larger than their
noise scores. As signal-to-noise ratio varies throughout speech owing to its intrinsic dynamic
energy range, those frames which contain little speech energy are likely to be ignored. As this
technigue switches only when the noise characteristics dominate the speech characteristics it
may be expected to operate most effectively in relatively high noise environment.

Figure 2 shows the design of spéech modelling with an acoustic background, where the speech
model has M mixtures and the noise model has N mixtures. The output speaker likelihood
score is then compared with a pre-set threshold to decide whether to accept or reject the
input speaker’s claimed identity.
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Figure 2: Design of speech modelling with acoustic background.

EXPERIMENTAL RESULTS
The proposed noise compensation approach has been applied to the problem of text indepen-

dent speaker verification. The techniques were evaluated as part of an automated system for
verifying the speaker with a short utterance. The goal of these experiments was to determine
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to what extent speaker verification performance in noisy acoustic environments can be im-
proved when prior knowledge of the acoustic background process is incorporated through the
use of distinct signal and background models.

The speaker verification experiments were performed on the TRUST speech database (Millar
et al., 1994), which contains natural speech commands from 45 male and female subjects.
Speech data were acquired in three sessions, with five repetitions of 30 utterances in each
session. An additional 10 utterances were recorded in sessions 2 and 3, with 2 repetitions in
each session. The intervals between the sessions ranged from one to several weeks.

The speech used in these experiments was digitised to 16-bit linear samples at a sampling rate
of 20000 samples/s. The speech pre-processing and MFCC generation was as described by
Zhu et al. (1994c). Two sets of the same utterances were used for each speaker: the first set
was clean speech and was used for training the speaker models: the second set (recorded in a
different session) was degraded by added noise and used to evaluate verification performance,
In order to use speech-only-utterance to train speakers’ models, silences within each utterance
in training data were cut.

Various acoustic background environments were simulated by adding Speech Babble and Of-
fice Noise from the NOISEX-92 corpus (Varga, 1993) to the digitised speech. The discrete
time samples of the noise signals were resampled, scaled and added to the speech giving
speech/noise SNR ratios of 2048, 104B and 54B.

In our experiments, speaker models were trained with clean speech from session 1. For
testing, 170 utterances from session 2 were degraded with various types and levels of noise.
In order to evaluate the proposed noise compensation approach, we used a conventional
mixture-Gaussian VQ classifier (MG-VQ) and our proposed mixture-Gaussian VQ with noise
model classifier (MG-NM) to evaluate speaker verification performance with noisy speech.
The speaker verification results from 10 speakers are shown in Table 1. The tabulated results
represent the equal-error-rate (EER) percentage for speaker verification with utterances of
about one second duration and thresholds derived a posteriori. We used M = 32 mixtures in
the speech model and NV = 4 mixtures in the noise model.

Effect of incorporating speech/background models during speaker verification
(Speech models trained in clean environment)

Noise type Speech Babble Office Noise
S/N ratio 0 20dB 10dB 5dB 00 20dB 10dB 5dB
MG-VQ 6.18 12.67 23.10 29.52 6.18 16.18 28.05 35.30
MG-NM 5.99 12.09 18.70 22.54 6.33 15.34 24.72 29.10
(mean % speech) || (99.75) [ (87.12) | (62.31) | (41.38) || (99.66) | (84.23) | (69.47) | (47.47)

Table 1. Speaker verification equal-error-rates for the MG-VQ and MG-NM classifiers and
mean percentages of contributing speech frames in the MG-NM classifier under speech babble
and office noise environments.

From Table 1, we can see that classifier MG-NM improved speaker verification results in all
our tested noise environments, especially in lower SNR environments. This was confirmed
by an analysis of variance, which showed that there was a significant difference (in all cases
p < 0.001) between the two rows of columns 5dB and 10dB.

Table 1 also gives the mean percentage of the numbers of speech frames which contributed
to the speaker scores in the MG-NM classifier. Speech frames were detected by the maz
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operator. Speaker verification results of the MG-NM classifier also deteriorated under larger
noisy environments since fewer speech frames were used for verifying speakers. However,
it outperformed the MG-VQ ciassifier, because excessively noise frames were not allowed to
influence the speaker’s overall likelihood score.

CONCLUSION

Conventional speaker verification techniques are rather sensitive to environmental acoustic
noise. To improve the verification process in this respect, we have proposed and tested
an acoustic noise compensation approach, based on prior modelling of background noise
with Gaussian mixtures and the use of a maz operator during calculation of the likelihood
score for the claimed speaker. As a result of extensive experimentation, we conclude that
with short speech utterances and various noise environments, noticeable improvements in
speaker verification performance have been obtained and significant improvements in high
noise environments can be achieved as expected.
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NOTES
! Technology for Robust User-conscious Secure Transactions.
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