AN AB INITIO ANALYSIS OF RELATIONSHIPS BETWEEN CEPSTRAL AND FORMANT SPACES

Simon Hawkins, {ain Macleod and Bruce Millar
Computer Sciences Laboraiory
Research School of information Sciences and Engineering
Australian National University

ABSTRACT - Building on earlier work (Hawkins & Clermont, 1990), this paper uses simple
Artificial Neural Networks to learn how to map points representing a single speaker’s voweis
in a 12-Dimensional cepstral space into points in a 3-D formant space. We find that an ANN
with only six hidden units can learn this mapping entirely on the basis of the supplied training
data. We then analyse the operation of individual hidden units to try to discover the means by
which the ANN is able to map input to output points so successifully. The suggestion from this
analysis is that the F1 coordinate in the output space is estimated using a linear combination
of input coefficients, but that the F2 and F3 coordinates are estimated by piecewise-linear
mappings. It appears that selection of one or other of alternative linear mappings is selected
in estimating the latter coordinates according to whether F2 is greater or less than 1350 to
1400 Hz or so, corresponding to the traditional front/back distinction.

Having gained some unbiased hints about the possible structure of the relationship between
vowel representations in cepstral and formant spaces, we then proceed to evaluate these
hints by means of multiple linear regression analysis. The overall results here confirm our
somewhat limited analysis of the operation of the trained ANN.

INTRODUCTION

This paper addresses the nature of the relationship between a cepsiral representation of a speaker’s
vowel system and its representation in terms of the first three formant frequencies. Broad and Clermont
(1989) have suggested that each of the ihree formants of a vowel can be estimated from a linear
combination of the low-order LPC cepstral coefficients. This implies the existence of a linear mapping
‘between the cepsiral and formant domains. if this mapping is in fact linear, then the monophthongal
vowels uttered by a single speaker should form a piecewise-planar surface in cepstral space just as they
have been observed fo do in formant space (Broad, 1981; Broad & Wakita, 1977). The angle between
the two planes may well differ in the formant and cepsiral domains, but the vowel surfaces should still
be piecewise-planar in form. However, Hawkins et al. (1994a) have found that the shape of a speaker’s
vowel surface is not necessarily the same in cepstral and formant spaces. This means that the mapping
between these spaces must (at least {o some extent) be noniinear. in cepstral space, a speaker’s vowel
surface tends to be parabolic in form and symmetrical about the main axis — the front and central vowels
predominantly lie on one side of this axis and the back vowels on the other. in formant space on the
other hand, the shape of the vowe! surface varies from speaker to speaker. Hawking ef al. found that
some speakers had a curved vowel surface while others had a surface that was near planar in shape.

Broad and Clermont (1989) proposed that each of the first three formants could be estimated in terms
of a linear combination of the low-order LPC cepstral coefficients. Broad (Broad, 1981; Broad & Wakita,
1977) had aiready observed that a speaker’s monophthongal vowels form a piecewise-planar surface
in formant space, with front and back vowels lying on different planes. F3 of a speaker's front and
back vowels thus had to be estimated using different linear combinations of F1 and F2, meaning that
by extension when estimating F3 from cepstral coefficients, different linear combinations would also be
required for front/back vowels. Hawkins and Clermont (1990) found some evidence for a piecewise-
linear relationship between the cepstral and formant domains. The current paper extends their work
with the aim of clarifying the extent to which the relationship between these domains can be regarded
as intrinsically nonfinear.

A NEURAL NETWORK WHICH PERFORMS CEPSTRAL-TO-FORMANT MAPPING

To investigate this question of nonlinearity, we took advantage of an ANN’s ability to learn arbitrary
input/output mappings purely on the basis of training data, given only that the ANN has sufficient

complexity to encode the required mapping and that the volume of training data is adequate for that
complexity. We presented the ANN with 12-D LPC cepstral input data, representing speech frames
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from the entire vocalic nucleii of the 11 monophthongal and 8 diphthongal vowels of Australian English,
as uttered in an Hvwlild context. (Further details regarding the speech data are given in Hawkins ef
al. (1994a)). We trained the ANN to map cepsiral data points into & 3-D output formant space with
minimum error (in terms of average Euclidean distances from the desired output points). The ANN
had a single layer of 25 hidden units with sigmoidal transfer functions between the input and output
layers. Three oulput units with linear transfer functions estimated F1, F2 and F3. When trialed on
the vowel systems of the four Australian English speakers used in the study by Broad and Clermont
{1989), Hawkins and Clermont (1990) found that such an ANN had no difficulty learning to extract highly
accurate estimates of F1, F2 and F3 from the cepstral representations of vowels. The ANN, which was
capable of learning highly nonlinear input/output mappings, learned mappings which were superior to
linear mappings derived using a least squares criterion. This result indicated that the cepstral to formant
mapping had nonlinear components.

We were interested in the nature of the mapping which had been discovered by the ANN. Complex
ANN architectures are notoriously difficult to analyse on the basis of their trained weights, given the
nonlinearities usually present. We thus experimented with a much simpler ANN with only six hidden
units, analysing the operation of each hidden unit after training. Two of the simpler ANNs were trained
to perform the cepsiral-to-formant mapping for single speakers (Speakers 24 and 01) not used in the
previous study. The first ANN, which was trained on the vowel system of Speaker 24, was found
to develop a hidden unit which apparently functioned as a “front/back” feature detector, “firing” in the
presence of back vowels but being quiescent otherwise. As shown in Figure 1, this hidden unit used an
F2 frequency cutoff in the region of 1350 to 1400 Hz or so to distinguish front and back vowels.
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Figure 1: Operation of front/back feature detector.

We inferred that this feature detector was being used to select separate input-output mappings for the
front and back vowel classes. We therefore divided the vowel system of each speaker into two classes
according to whether their F2 values were above or below the value identified by the feature detectors.
We then analysed the inputs to each of the remaining four hidden units (a linear combination of cepstral
coefficients) in relation to the outputs from these units (ie. the activation levels after the corresponding
weighted sums of inputs had been passed through the sigmoidal transfer functions). Depending on
which part of the sigmoidal transfer function is being used within a given hidden unit, the output can
relate to the input in either an approximately linear or highly nonlinear manner.

As one aspect of ous analysis of the ANN's operation, we assessed the extent to which the three formants
of the front and back vowel classes correlated with the hidden units’ inputs and outputs. If there is a
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similarly high correlation between both the input and output of a hidden unit with one of the formant
values across all vowels, then we can assume that the unit has discovered an essentially linear mapping
for this formant between the distinct representations of a vowel in cepstral and formant space. ! on the
other hand there is a poor correlation with both the input and output of a hidden unit for a formant, then
we can assume that the unit did not discover a mapping which applies to this formant across all vowels
{quite possibiy because it piayed another roie in the trained ANN). in view of the hint that the ANN was
treating front and back vowel classes separately, we examined correlations between formants and the
hidden unit outputs separately for each class. Within the two classes, we correlated viaues for each
formant with both the input to each hidden unit and its ouiput. If for a given formant there was a simiarly
large correlation with both the input and output of a hidden unit, then we can assume that the given unit
has discovered a linear relationship between the cepstral relationship and this formant: the hidden unit
must be passing its input through the central essentially linear portion of the sigmoidal transfer function.
(Note that the fact that one hidden unit has found such a linear mapping does not necessarily mean that
the overall operation of the ANN will lead to such a linear mapping between its inputs and the relevant
output, given the possible interactions with other hidden units. The resulis of the following section tend
to suggest that any interactions here are minor.)

if, on the other hand, the correlation between a hidden unit's output and a formant exceeds the correlation
with its input, then we assume that the hidden unit has discovered a nonlinear cepstral-to-formant
mapping: the hidden unit must be passing its input through either the upper or lower nonlinear portions
of its sigmoidal transfer function.

Table 1 shows the resuit of the correlation analysis of the hidden unit inputs and outputs, for the ANN
trained on the first speaker (Speaker 24). Hidden unit 6 appeared to function as a back/ront feature
detector (as described above). Hidden unit 3 appeared to have discovered a linear relationship between
the cepstral representation of vowels and F1, with correlations across all vowels of 0.84 with its input
and 0.85 with its output.

All vowsls (616) Front vowels (258) Back vowals (358)

Hiddenunt | el er R | Bt E2 B3 | F1 F2  F3
hut input -0.45 0.71 059 | -0.81 0.70 053 | -0.40 -0.21 -0.00
output | 0.45 071 058 | 0.79 074 053 | -037 -024 -0.05
huz Pul | 068 002 041 | 054 063 072 | 078 074 034
output | 024 031 022 |-027 034 023 |-032 -044 -021
hug PPUL | 084 020 049 087 690 069 | 086 O0A1 033
ouiput | 0.85 -0.10 -0.48 | 0.81 0.7t -0.66 | 0.92 079 -0.44
hus_ PPUL | 037 045 064 | 031 034 071 | 055 048 .18
output | 031 -056 060 | 035 -046 075 ] 044 038 -023
hus PUl | 045 067 047 | 084 082 050 | 0.05 003 022
output | 056 056 041 | -083 082 045 |-033 -0.19 -0.11
puG PP | 025 071 033 | 025 041 021 | 036 045 030
output | -0.18 034 023 | -020 0.32 0.18 | -0.25 -0.3% -0.29

Table 1: Correlations between (i) the inputs and (i) the activation levels (outputs) of the six hidden units
(hut-hub) of the ANN and the formants across all vowels uttered by Speaker 24,

For F2 and F3, however, we found evidence that the ANN was applying separate linear cepstral-to-
formant mappings for the front and back vowels. For F2, hidden unit 5 gave correlations across all front
vowels of 0.82 for both its input and output. This unit is therefore using a strongly linear mapping to
extract F2 from the cepstral representation of front vowels. Again for F2, hidden unit 3 gave correlations
across alt back vowels of 0.81 with its input and 0.79 with its output. This suggests that this hidden unit is
using a strongly linear mapping to extract F2 of the back vowels fromtheir cepstral representations. (Note
that hidden unit 3 appears to serve two functions, mapping from cepstral space to F1 for all vowels and
from cepstral space to F2 for the back vowels.) For F3, hidden unit 4 gave correlations across the front
vowels of 0.71 with its input and 0.75 with its output. This hidden unit appears to have learnt a moderatiey
strong linear mapping which extracts F3 of the front vowels from their cepstral representations. With
back vowels, we found no correlation of any magnitude between F3 and the acfivity of any hidden unit.

The results with the other ANN, trained with Speaker 01, were comparable. We found evidence that
hidden unit 2 in the ANN had discovered a single linear cepstral-to-F1 mapping for all vowels. For F1
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there were strong correlations of 0.91 with its input and 0.85 with its output. For F2 and hidden unit 1,
we found strong correlations across the front vowels of 0.83 with its input and 0.76 with its output. With
F3 and hidden unit 5, there were simiiariy strong correlations across the front vowels of 0.74 with its
input and 0.84 with its output. For F2 and hidden unit 3, there were large correlations across the back
vowels of 0.92 wi s output and 0.92 with its input. As with the first ANN, we found no evidence that

the second ANN had been able to discover a linear mapping which extracted F3 of the back vowels from
their cepstral representations.

Summarising the results of our experiments with simplified ANNSs, it appears that F1 can be estimaied
from the cepstral representations of all vowels using a predominantly linear mapping. Separate finear
mappings were used for front and back vowels when estimating F2. The ANNs discovered a single
finear mapping for each speaker with which to estimate F3 for the front vowels, but no such mapping
was found for E3 and the back vowels. The relationship between the cepstral representation of a vowel
and F3 would thus appear to be rather complex and nonlinear.

Having gained certain data-driven hints from our ANNs about the nature of relationships between cepstral
and formant space representations of difierent vowels, we now proceed fo investigate the suggested
relationships in a systematic fashion, using vowei data from our 14 male speakers of Australian English.
EVALUATION OF PIECEWISE-LINEAR MAPPINGS VIA LINEAR REGRESSION

Two strong suggestions from our ANN studies were that the relationships between cepstral and formant
space representations of a vowel could be approximated in either a linear or piecewise-linear fashion,
depending on the formant and the class of vowels, and that in the piecewise-linear case the traditional
back versus front vowel distinction formed an appropriate division into two classes (each with a linear
mapping). We evaluated these suggestions by assessing the relative errors when estimating each
formant, using both linear and piecewise-linear mappings. Inthe tatter case, we tried a range of possible
divisions of the vowel space info fwo classes with linear mappings o assess the utility of the back/front
distinction.

The “pivot” of a speaker's vowel distribution in the F1-F2 plane is defined here as the intersection of the
line separating the speaker’s front and back vowels with the line separating their high and low vowels.
We rotate a line about this pivot point to separate the speaker’s vowels into various groups. At certain
angles this separation will correspond to traditional divisions such as high versus low, back versus frontor
rounded versus unrounded. A line through the pivot of a vowel distribution provides a simple but effective
means for splitting the vowel distribution into two phonernic classes. To find which split provided the best
basis for performing a piecewise-linear mapping between cepstral and formant spaces, we rotated this
“hinge” line full circle about the pivot point in one degree increments. At each increment, we determined
the best overall mapping between 12-D cepstral space and 3-D formant space which could be obtained
by applying separate linear mappings to vowels on either side of the hinge line. The overall accuracy of
the mapping was measured by the average Euclidean distance between the actual location of vowels in
3-D formant space and the location to which they were mapped. Table 2 reporis the resuits of these and
the following experiments.

In the fight of Broad and Clermont’s (1989) results, we also examined the extent to which a single
linear mapping could be used to map vowels between cepstral and formant spaces. A piecewise-linear
mapping achieved an average error (in Hz) which was only 60% of that achieved with a linear mapping.
On an individual speaker basis, substantially better fits with piecewise-linear mappings were evident
except with Speaker 4, Speaker 10 and Speaker 11. For all but one of our fourteen speakers, we
found that the best piecewise-linear mapping was achieved by applying separate linear mappings 1o the
speaker’s front and back vowels. Inthe case of Speaker 13, however, the best piecewise-linear mapping
involved separate finear mappings for rounded and unrounded vowels. (Note that in Australian English,
ali front vowels are unrounded and all but one of the back vowels are rounded.)

The need to use a piecewise-linear cepstral-to-formant mapping indicates that the shape of a speaker’s
vowel surface in the cepstral and formant spaces is different. Inspection of the surtaces (Hawkins et
al. 1994a) shows that a primary difference in shape lies in the degree of symmetry of the surfaces
about their main axis. in cepsiral space, a speaker’s vowet surface is symmetrical about the main axis.
in formant space, it tends to be highly asymmetricat: the speaker’s front and central vowels occupy
a surface with much more curvature away from the main axis than the speaker’s back vowels. This
difference in symmetry about the main axis explains the need to “split” the surface down the main axis
when mapping between the two spaces.
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Error mapping Correlations between actual formants & Hinge-line splitting

Spkr. vowels from those estimated by C-to-F mapping vowels for PWL mapping

Nmbr | Cdo-F space (Hz) | (py £y #{(Fy, Fa) #{F, F3) pivot angle spiits

lin. PWL A lin. PWL | lin. PWL] lin. PWL | F1,F2(Hz) toF1 {eature
o1 262 122 140 | 970 .986 | .903 .994 | 793 .90t 577,1438 -30 front-back
04 129 92 37 | .962 975 | 973 .991 | .874 905 | 505,1357 450 front-back
10 127 75 62 | 957 984 [ 978 994 | 912 962 | 498,1400 -30 front-back
1 101 &0 41 | 967 979 | 982 996 | .B91 947 | 558,1437 +0 front-back
12 216 131 85 | 955 975 | .958 994 | .757 .900 525,1359 +30 front-back
13 (271 162 109 | 942 .976 | 912 978 | 796 .915 | 512,1460 -70 rounding
19 185 79 76 | 948 974 | 955 993 | .916 .960 | 491,1444  +10 front-back
20 (202 99 103 ] .912 .955 | .931 .990 | .849 .940 | 483,1452 -50 front-back
24 | 266 154 101 | .959 971 | 822 987 | .750 .853 | 479,1477 -30 front-back
30 [ 234 135 99 | 908 931 | 912 986 | .848 .883 | 485,1458 -20 front-back
31 174 105 69 | 949 977 | .964 994 | .801 .994 | 507,1502  +10 front-back
34 | 245 178 67 | .929 943 | 936 .988 | .711 .751 | 491,1540 -10 front-back
35 187 125 72 [ 867 .880 | 965 991 | .786 .900 | 475,1300  +10 front-back
36 148 92 56 | .957 967 | .961 .988 | .896 .935 | 478,1501 -10 front-back

Mean [ 194 114 79 | 949 970 | 947 900 | .827 .810 | 504,1437 -10 13 backness

1 rounding

Table 2: Mapping the vowels of 14 male speakers from 12-D cepstral space into 3-D formant space

A piecewise-linear mapping will in general be more accurate than a single linear mapping. This begs the
question as to whether this advantage of piecewise-linear mapping applies equaily to all three formants in
formant space. To investigate this issue, we correlated each of the formants of a vowel with the formant
frequencies obtained via two types of mapping: a piecewise-linear mapping in which separate linear
mappings were applied to the front and back vowels, and a single linear mapping which was appiied to
all vowels. With F1 and F2, use of a piecewise-linear mapping gave only a marginal improvement over
a single linear mapping from 12-D cepstral space into the F1-F2 plane. With a single linear mapping,
the correlations between actual and estimated F1 and F2 were both 0.95. This figure improved only
marginally with a piecewise-linear mapping t0°0.97 for F1 and 0.9 for F2 (the results with the single
linear mapping were so good that little further improvement was possible). On the other hand, the
correlation between the actual and estimated F3 of a speaker’s vowels was 0.83 across 14 speakers
with a single linear mapping. Using a piecewise-linear mapping, the improvement i 0.91 obtained with
F3 was relatively much greater than tah obtained with F1 and F2.

CONCLUSIONS
Our trained ANNs strongly suggested that F1 could be estimated across all vowels by a linear mapping
from cepstral to formant space. They also indicated that in estimating F2 and F3, the best results were
obtained with a piecewise-linear mapping comprising two separate linear mappings. The remarkable
result was that in a purely data-driven manner, the ANNs appeared to choose one or other of the linear
mappings on the basis of whether F2 was greater or less than 1350 to 1400 Hz or so, corresponding to
the traditional front/back distinction!
Onusing correlation analysis to systematically investigate the nature of the relationships between cepstral
and formant space suggested by the ANNs, we found the following results across our 14 speakers (as
shown in Table 2):

e In comparisom with a linear mapping, a piecewise-linear mapping gave substantially better accu-

racy when estimating vowet locations in 3-D formant space from their 12-D cepstral representations.

o When estimating F1 there was very little improvement obtained with a piecewise-linear mapping
compared with a linear mapping. We therefore conclude that the relationship between cepstral
and formant space is essentially linear for F1.

e When estimating F2 there were more-noticeable improvements when using a piecewise-linear
mapping, but these were still small enough for us to conclude that the relationship between cepstral
and formant space for F2 was approximately linear.

o With F3, however, there was a substantial improvement obtained through use of a piecewise-linear
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mapping. We conciude that in the case of F3, the relationship between cepstral and formant

spaces is basically non-linear.
The finding through our detailed analysis that the relaticnship bstween cepstral and formant spaces is
approximately linear in the case of F1 and F2 opens up the possibility of extracting a plane approximately
corresponding to F1 and F2 from the 12-D cepstral representation of a speaker’s vowel system. An
unsupervised algorithm for the extraction of such a plane is developed in Hawkins ef al. (1984b). The
non-linear relationship between F3 and the cepstral representation precludes the possibility of extracting
accurate F3 estimates using linear transformation methods.
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