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ABSTRACT - We consider the possibility of segmenting speech into phonemic segments
using an idea that stems from the concept of Linear Predictive Coding. Linear Trajectory
Predictive Segmentation, or LTPS, involves performing linear predictive analysis on each
dimension of the speech trajectory, and assuming that points in the trajectory where the
error of our prediction is large correspond to points where phomemic transitions are
occurring. LTPS has two basic parameters that alter the prediction made. The ability
of this method to accurately segment speech into phomemes is analysed, for various
combinations of these parameter values.

INTRODUCTION

The basic idea behind linear predictive analysis involves coding speech samples as linear combinations of
past speech samples. Finite intervals of the speech sample are predicted with a set of coefficients that
minimise the sum of the squared differences between the actual speech samples and the linearly predicted
ones. The coefficients are simply the weightings for each previous sample used in the linear prediction.

We decided to perform linear predictive analysis on each frame, z;, of a feature vector representation of
our speech sample rather than the original speech sample S(n). We are thus looking at a high dimensional
speech trajectory, so we have to make predictions for each dimension of the space we are working in. If
the feature vector representation is n-dimensional, then z; = (=1, 23,4, ...,:c,.,.v)T, 8o we would get the
following system of equations for a linear trajectory predictor of order p, memory m:

Epeli = 01,i8n-2 +82in 8,5 +... tapi®a-p-1,i fori=1,2,...,n
Bp_2i = 01ifn-34 +02,iTn-4,i +... Hpita_p_z; fori=12,...,n m
Tnemi = 01,i%n-m-14 +82ifn-m-2i +--. ‘OpiTa—p-ms fori=12,...,n

We now have n x p unknown predictor coefficients to solve for, and a; ; corresponds to the i-th predictor
coefficient in the j-th dimension.

A common view of the structure of speech is that it consists of regions of quasi-stationarity in the
spectral envelope, interspersed with abrupt changes in behaviour. These abrupt movements in the spectral
envelope correspond to short periods of unpredictable movemnent in the speech trajectory, and hence at
these points we assume that our linear predictor will give high prediction values. So, if we make linear
predictions of each frame of our speech trajectory, and graph the prediction error we hope that regions
where our prediction error is high will correspond to phonemic transitions in the original speech. We
thus investigated how well this method detects these phoneme transitions for various values of p and m.

COMPUTATION OF THE LINEAR TRAJECTORY PREDICTION METHOD

The best predictor coefficients to use in the system of equations in 1 are of course those that minimise the
error. The system essentially defines m hyperplanes in p dimensional space, and the optimum predicting
coefficients will correspond to a point in the space whose sum total squared Euclidean distance from all
hyperplanes is a minimum.

Qur prediction error for frame n, dimension i is thus:
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Ens =(en-14 —01,iTn-2s +02,i%n-3, +... 4apiEn—p-— 1,42

.
+{@n-2i ~81,iTa-34 +a2,iBn—4,i oo dapen—p—2,§°
+ (Zaemi —@1i%aem-1i +02iZaem-2i +... +6piEn—m—p,i)

We hence find our besi predicior coefficients for frame n, dimension i by seiting 8E, ;/8a;; = 0, for
j=1,2,...,p, which gives us the following equation:

2 im1 Bnej=2,i®nj-1, E,‘:x Tomjm2,i e Z,-:x Fn—j=~2,iTnj-pi 2,4

I\

m .2 m B o e m e
Zj:l Ta-j-1,4 Ej:l ZTrwj-l,ifn—j~2,4 E%:x Ba—j—1,iTn—jp,i { ay,4 \‘
. 1 2

m L N T s i o e i 2
l Ej=1 Tn—j-p,i®n—j-14 Ej:l Tp—-j-p,iTn-j-2,4 2_7’:1 Tpejupi

313
3 im1 Enmjm14Tn—js
S Eneje2iBnmji
j=1 Fn-j-2,iTn—j;i .
i ,fori=1,2,...,n
m .. . P
Ej:l La—j—p,i%n—j,i

or put simply, @6 = 1, where @ is the symmetric p X p matrix and a is the vector of predictor
coefficients. Non-singularity of the matrix & is almost always ensured if the memory of our predictor,
m is equal to or greater than the order, p of the predictor. The only other way that this matrix could
be singular is if some of the m hyperplanes defined in the system of equations are parallel, and of course
when dealing with real data, this rarely occurs, and this situation never occured in our testing.

We now have a unique matrix of predictor coefficients for each frame in the speech trajectory. If we
denote the matrix for frame t as-A(f)-= [ay;];, we can use this matrix to make a prediction, #; of what

we think the frame z, should be.

¢ = X(D)A()

where
X@) = 24m1 @iz -+ 2eyp |

We then define our total prediction error for each frame, E; to be

Ei=lzi— &= Xn:(:g,; —&)?

i=1

We now have a sequence of error values, that is, an error graph, which reflects the linear predictability of
the speech sample at each frame. If there is a direct correlation between high total error values and points
in the speech trajectory that correspond to tramsitions between phonemes, then this can be a useful way
of segruenting our speech trajectories into phonemic elements. Two example error graphs with different
(order, memory) pairs are displayed in figures 3 and 4.

We analysed the performance of the LTPS method with the following combinations of order and memory.

Order | Memory

2 2,3,4,5and 6
3 3,4,5and 6
4 45 and 6
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All these types of LTP are compared with one another in an effort to find the combination of
order and memory that achieves the best results.

ANALYSIS

- Y S .

We analysed the performance of our algorithms by producing error graphs from speech data that was
obtained from the TIMIT data base produced by the National Institute of Standards and Technology
(U.S.A.). The 12 (ordet, memory) combinations were all used to produce error graphs for 160 sentences.
Four speakers, two male and two female, were taken from each of the eight dialect regions, and five
sentences from each speaker were used. The sentences had been recorded in low noise conditions, sampled
at 16 kHz and digitized to 16 bit resolution.

A fast Fourier transform with a 32 millisecond window and 29 millisecond overlap was then performed
on the sample, and the average frequency energies were binned into 12 bandwidths covering the audio
spectrum. We thus have the result that all speech samples were represented as a discrete trajectory in
IR!2. The errorgraphs were then compared to the phoneme transition points that are provided by the
TIMIT data base.

Ideally, we would want our graphs to have higher values at frames corresponding to phoneme transitions,
and lower values at frames situated in the middle of phonemes, similar to what is shown in figure 1:

l;honeme transitio\r: points

Error —

———
e -

_—

Frames

Figure 1: The ideal error graph

Note that the actual values associated with the graph are not important, as any change in scale can be
accounted for by a similar change in scale to a threshold value that we use to decide where to segment
trajectories.

For each LTP case, we should get high error values at and just after the point where there is a defined
phoneme transition. This is because a p-th order linear predictor, with memory m, predicts the next
frame from the previous m + p frames, and so predictions of the first m + p frames after a phoneme
transition will have used some frames from two distinct phoneme states.

A performance measure function was devised to allow us to compare our error graphs quantitatively. Put
simply, this function adds all the relative errors of frames at and just after each phoneme transition, and
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subtracts all relative errors of all the other frames. The error values that are added, that is the error
for the frames at and just after phonemic transitions, are weighted so that a constant error graph will
give a performance rating of zero. These particular error values are also weighted by another factor that
incorporates the distance of these - hopefully unpredictable - frames from the actual transition point. In
other words the frame that is at the point of transition is given more weight than the frame next to it
and so on.

The relative error for each frame is calculated by taking the actual error, dividing by the average error of
all frames inside that particular phoneme and squaring the result. Using relative errors rather than the
actual error values gives the performance function scale invariance, which is ideal for our purpose.

To assist in our description of our performance measure, let the frames of the speech trajectory that
correspond to a phoneme transition point, as defined in the phonetic transcription information provided
by the TIMIT database, be labelled S., where S; corresponds to the i-th phoneme transcription in U,
and let the number of phoneme transitions be ¢. Also let S; = S; + p + m + 3 Each frame requires
the previous p 4 m frames fo obiain our linear trajectory prediciion error values, and so the frames in
the regions {S;, i1, ..., S} should have higher prediction errors. The extra three frames in both cases
allows for inaccuracy of approximately 5 milliseconds in the original phonetic transcription alignment.

The performance indicator, denoted I(E, S, §) is defined as follows:

¢ Siga

WE,SS)=3"3" filz))

i=1j=5;

where .
ey ={ G S << Sin
i XWi_s(Zy ,5i<i<&
where s,
@ = by ’.-+1 E;
P S =S
Sigr — S
X; = ~Fe——
Si - S;
and

5= S)Wa=1)
-5 i

where W, is the amount of weighting given to the total predictor error at the point of phoneme
transition, which is

= i (S’,-—S'-):’
i (W+ 1)

An error graph that has relatively high values at or just after phoneme transitions, and low values
elsewhere will score a higher performance value than an error graph that doesn’t do so. Hence error
graphs that do the right thing will score well. Figure 2 is a graph of the average performance ratings that
each of the LTP algorithms achieved over all dialect regions. The performance ratings displayed refer to
the performance of the algorithm on each sentence, averaged over all sentences.

The last column labelled “MLR” corresponds to the performance of another method of segmenting the
speech trajectory, involving Maximum Likelihood Methodologies, explained by Algazi, Brown, Ready,
Irvine, Cadwell & Chung (1993). This method also produces a graph which.aims to. associate high
values in the graph with points of sub-word transitions. These sub-words do not correspond directly to
phonemes, and hence it is no surprise that the algorithm performed indifferently when analysed with our
defined performance measure.
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Figure 2: Average performance ratings over all Dialect Regions.

As figure 2 shows, the best overall performance was achieved by the third order linear predictor with
memory five. However further analysis of this particular algorithm revealed that it only performed well
during transitions involving fricatives, for example nasal-fricative transitions, fricative vowel transitions
and so on, with the exception of stop-vowel and vowel-stop transitions, which also performed well. Unfor-
tunately other transitions performed indifferently. It is thus evident that this algorithm cannot be used
on its own as a reliable means of segmenting speech, however it shows some promise at detecting certain
types of phoneme transitions.

POSSIBLE IMPROVEMENTS TO THE METHOD
The LTPS algorithm could be refined, in an effort to obtain better results, in the following two ways.
-~ The resultant error graphs could be smoot.hedl to filter out random spikes in the graph.

-We could change this by replace our n equations for each frame with the one matrix equation, as shown
below:

zp = A1Zn_1 + AsZna+ -+ ApZap
This draws all dimensions of the space into the one equation, which seems intuitively appealing, but
increases the complexity of the problem by a factor of n.
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Figure 3: Example errorgraph for the LTP segmentation method {order=3, memory=3)
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Figure 4: Example errorgraph for the LTP segmentation method {(order=3, memory=5)
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