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ABSTRACT - We compare four models (issued from psychology) of Audio-Visual (AV)
integration for speech perception. First, we show that two of them are incompatible with
psychological data. Then we present a perception test on AV identification with evidence for
a complementarity of A and V in what concems place of articulation. Finally, we present an
implementation of the two remaining plausible models, and we show that one of them makes
a betier use of the complementarity, and hence achieves higher recognition scores.

INTRODUCTION

Speech is a multimodal means of communication. It is conveyed by acousiic and optic stimuli, and
processed both by the auditory and visual system. Our work deals with the way of combining this two
streams of information.

In section 1, we will review some of the models proposed in the literature for audio-visual fusion in
speech perception. Section it will iry to expose the facts that enable us to choose between these
models. In section Hi we will present psychological data on the audio-visual perception of French
vowels. And section IV will deal with our implementation of two of the models described before. This
comparison will lead us to conclude that the best model is the one that transcodes both inputs into a
motor space in order to fuse the two informations in that space.

1. MODELS OF SENSCORY FUSION iN SPEECH PERCEPTION

The problem of intermodal transfer and integration is well-known and intensively studied in psychology
(see review in Stein & Meredith, 1993), with three main categories of proposals considering
intersensory fusion, namely (1) language or more generally symbolic attributes as the support for
fusion, (2) recoding of one modality into another, generally supposed to be “dominant” for & given
perceptual task, or (3) amodal continuous representations characlerizing the physical properties of the
distal source independently of the proximai sensations (direct realist theory of perception, see Gibson,
1966). In the field of speech perception, the main theoretical options have been most clearly
presented by Summerfield (1987), with four main options:

(DY) Direct identification from audio-visual configurations, or an extended version of Klait's “‘Lexical
access from spectra” (Klatt, 1979) into a “Lexical access from spectra and face parameters” model;

(S1) Separate Identification from auditory and visual inputs, followed by a fusion of the phonetic
features identified by one or the other modality; the fusion can then operate gither on logical values,
as in the “Vision Place Auditory Mode” model in which each modality in the audio-visual mode is in
charge for a specific set of phonetic features (McGurk & MacDonald, 1978; Summerfield, 1987), or on
fuzzy logical values (as in Massaro’s Fuzzy Legical Model of Perception, FLMP, see Massaro, 1987) or
some equivalent as in the attempts o use neural network models (see Roberi-Ribes et al,, in press).
(RD) Recoding in the Dominant modality (acoustic),visual speech as a means of estimating the vecal
tract filter, the estimation being then in some sense averaged with the one derived from auditory
processing, while the source characteristics are estimated only from the auditory pathy; the combined
source and filtering characteristics thus estimated are then provided to a phonetic classifier.

(RM) Recoding in the Motor space, transcoding of both sensory modalifies Into estimates of gestural
representations at any level (vocal tract geometry or deep motor commands), followed by a fusion in
the common motor representation space and further identification in that space, as suggested by
tenants of the Motor Theory (Liberman & Matiingly, 1985) or the Direct Realist Theory (Fowler, 1986)
of speech perception.

We observe that Models (D) and (S1) enter in the first category of models in which fusion occurs at a
symbolic level, while Mode! (RD) which is based on a recoding of the visual modality into the dominant
auditory one enters in the second category, and Model (RM) is a clear member of the third category of
neo-Gibsonian modeis.

The basic structure of Models DI, Si, RD and RiM is described in Fig. 1. In Model DI, there is a direct fink
between a set of auditory and visual features and a given lexical category. in Model S, an intermediary
step before lexical identification consisis in a separate identification from either the auditory or the
visual stimulus, and the fusion occurs later (“late integration”, see Vroomen, 1992). In Models RD and
RM, there is also an intermediary step into a common representation space. However, this common
space where fusion occurs precedes the identification leve!, contrary to Model 51 : Models RD and BM
hence assume “early integration”.



Il. PSYCHOLOGICAL DATA IN FAVOUR OF A COMMON CONTINUOUS REPRESENTATION
BEFORE FUSION AND IDENTIFICATION

I1.1 The case of Model DI

The difference between Model DI and Modeis SI, RD and RM is that the first one involves rio common
intermediary representation before integration, Hence the main characteristic of Mode! D is that it does
not allow any “comparison” or “matching” between the auditory and the visual inputs. However, a
number of experimental data show that the human brain performs such a comparison, in order to
detect incongruities between both inputs (Kuh! and Meltzoff, 1982; Summerfield and MacGrath,
1984, Sekivama, 1994).Thereiore, there must exist some intermediary common stage where the
auditory and visual inputs may be compared before fusion, and MODEL DI HAS TO BE REJECTED.

IL.2 Early vs. late integration (Models RD and RM vs. SI)

Data by Green & Miller (1985) showing that the lip-read duration of a syllable influences the auditory
decision whether the initial consonant of an audio syliable is voiced or voiceless are difficult io
understand with a late-integration model, since the visually perceived syllable duration is a quantitative
data that would be lost in a phonetic trace of the visual input, and hence it would not intervene in the
late fusion process. Moreover, a number of data show hat subjects are able to extract temporal
coordinafions between the auditory and the visual inputs in experiments on the audio-visual recovery
of voicing (Breeuwer & Plomp, 1986). This is obviously incompatible with a late-integration model, in
which neither the auditory nor the visual phonetic decoding modules would have any cue enabling (o
take a decision in respect to the voicing feature. Therefors the balance is rather in favour of Models RD
or RM, and MODEL S! MAY BE REJECTED.

1.3 Optimal exploitation of the complementarity between audition and vision

A formal study (Robeit-Ribes et al., in press) shows that if there is a system of axes exhibiting a natural
complementarity between the two inputs, one being more precise on the first axis and the other on
the second axis, the fusion should be realized in this system. We shall see in the next sections that
this leads io an advantage for Model RA.

lll. BIMODAL PERCEPTION OF VOWEL IN NOISE
We shall see in this section that there is a naturai complementarity between audition and vision in what
concems vowel identification.

1.1 Method

Agroup of 21 French subjects was presented with 10 reafizations of the 7 French vowels [a, €, i, 8, ¥,
9, u} in audio, visual and audio-visual conditions, with 7 signal to noise ratios, namely: no noise, 12 dB,
6dB, 0 dB, -6 dB, -12dB and -18 dB.

Subjects were asked which vowel they thought the speaker had pronounced.

1.2 Results

The results are presented on Fig. 4. for the audio-alone stimuli and on Fig. 5 for the audio-visual and
visuai-alone stimuli. On Fig. 6 we present the gain due fo the visual information expressed as the
difference between the audio-visual scores and the audio-alone scores.

On Fig. 7, we present the probability of correct identification of three phonetic features, namely
fongue height (i, y, W vs /e, g, of vs /a/), tongue front-back position (4, e, g, y/ vs /o, w) and lip
rounding (i, e/ vs /@, y, 0, W/). We can see that for visual stimuli, lip rounding is perfectly identified,
tongue height is moderately perceived and front-back is poorly identified. On the other hand, for the
audio stimuli, tongue height is the identification most robust to noise, and froni-back and rounding are
less robust, with a little advantage for the former.

We see that the best information about place of articulation perceived by vision is the worst perceived
by audition and vice-versa. Notice that up to now audio-visual complementarity has been rather
conceived as an Audition-Mode Vision-Place complementarity : it is the first time that complementarity
WITHIN PLACE FEATURES is demonstrated.

Inthe next section we shall investigate whether one of the models (RD or RM) takes better advantage
of this complementarity than the other.

V. MODELLING THE BIMODAL IDENTIFICATION OF VOWELS IN NOISE

This section will provide a comparison of models RD and RM in respect to the bimodal identification of
French stationary vowels in acoustic noise. We shall see that Models RM performs a better exploitation
of the natural complementarity described in section i11.2.
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V.1 Corpus .
We have selected 100 “realizations” of each of the 10 French oral vowsls [a, €, ¢, i, &, 8, ¥, 2, 0, u}.
The auditory input for each occurrence was defined as the representation of the vowel spectrum in a
classical (Bark, dB) space with 20 1-Bark wide channels between 0 and 5 kHz. Noisy acoustic signals
were obtained by adding various amounts of Gaussian noise on the temporal stimuli, before further
spectral analysis. In what concerns the visual input, we selected three main characteristics of lip
gestures (Abry & Bo&, 1986), namely horizontal width (A) and vertical height (B) of the internat lip
opening, and lip area (S). (A, B, S) triplets provided the visual input for each occurrence.
V.2 Models
1IV.2.1 implementation of Model RM
The whole schema is displayed in Fig. 2. A crucial choice in this model concems the definition of the
“motor space” in which integration should occur. We have chosen articulatory representations based
on three parameters, namely X, Y (which are respectively the horizontal and vertical co-ordinates of the
highest point of the tongue) and S (the inner-lip area). Of course, X, Y and S respectively provide
articulatory correlates of the front-back, open-close and rounding dimensions.
From auditory inputs fo articulatory representations — The auditory inputs were 20-dimensional
dB/Bark auditory specira. The outputs were prototypical values for X and Y for French vowels, and the
S value exiracted on the corresponding image in the corpus.
From visual inputs o articulatory representations — The visual inputs were {A, B, §) tiplets. X (the
tongue front-back position) was supposed 1o be impossible to estimate on the visual paih, and S was
diractly transmitted from the visual input, hence only the association between (A, B, S) and Y had fo be
learned.
Fusion in the articulatory space — An audio-visual estimate of the (X, Y, S) set was finally derived. The
parameter X was estimated only from the acoustic path, while the other two parameters were
determined from the corresponding ones provided by both paths. This was performed using the
following formulas:

Yay =y Ya+(i-ay)Yy and  Sav=0gSa+{1-ag)Sy
where index A means auditory, V visual and AV audio-visual. ey and ag are sigmoidal funclions of
S/N, varying between a value close to 0 for low S/N valses (foo much noise; aimost no available
information in the acoustic signal) and a value lower than 1 for high S/N values (no noise; the audio-
visual percept is influenced by both the visual and the auditory inpuls). The parameters of the
sigmoids were learned under a criterion of minimal globat error for all learning realizations at all S/N
values.
Vowel identification — We used a Gaussian classifier in the (X, Y, S) space, with a choice to perform in
one between ten classes. The learning corpus for estimating the mean ard covariance matrix for each
vowel class was based on (X, Y, S) triplets delivered by the auditory path alone on realizations
presented at 4 difierent levels of noise covering a large range between no noise and largely degraded
but stilt partly recognizable stimuli (S/N = 99, 24, 12 or ¢ dB).

1V.2.2 Implementation of Model RD
This model was first implemented for the English vowels by Yuhas et al. {1989). The whole schema is
displayed in Fig. 3.
From visual inputs 1o “auditory equivalent” representations — Once more, images were represented
by (A, B, S) triplets, and sounds by 20-dimensional dB/Bark auditory spectra. However, since the final
Gaussian classifier in Model RM was fed with 3-dimensional inputs (namely audio-visual estimates of X,
Y and S}, we found it fair to compare its classification resulis with a 3-dimensional version of Model RD.
A second version (in which the auditory representation consisted in the first three principal
components of the 20-dimensional auditory spectra, previously determined through a Principal
Component Analysis) can be found in Roberi-Ribes et al. (1993). Results of this second version were
worse than resulis of the version presented here.
There is for French vowels a probiem linked to the existence of both front and back rounded vowels,
with almost the same lip pattern, but quite different spectra, and Model RD has to associate one
spectrum to each lip patern! Our approach to solve this problem has been treated elsewhere (Robert-
Ribes et al., in press).
Fusion in the auditory space — The integration of the auditory spectrum specta with the “visual” one
specty estimated from the (A, B, S) triplet was done point by point according to the formula :
spectp Ay = 0 specip A + (1-0) spectp v
withoae [0,1L ne {1,..,20}
o is a sigmoidal function of S/N whose parameters are learned using the same criterion as for model
RM. A unique o function was used for Model RD so as to keep the number of parameters o iune at a
reasonable level in relation to the size of our corpus.
Vowel identification — The parameters of the final Gaussian classifier were estimated on the auditory
path alone, through the same learning corpus as for Model RM (50 realizations, 4 levels of noise).
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IV.3 Results

Correct identification is presented as a function of S/N for Models RM and RD on Fig. 4 for the auditory-
alone path and on Fig. 5 for the audio-visual path. On Fig. 4, it appears that Model RM performs
surprisingly weli, with resulis almost as good as Model RD for S/N higher than -6dB: the results are
poorer only for the very high or very low S/N values for which the high dimensionality of Model RD
allows the capiure of fine discriminating details for classification. This result, quite unexpected, shows
that the linear rearrangement of auditory spectra estimating the “articulatory” representation (X, Y, S)is
in fact quite efficient for vowel classification in silence or reasonable levels of noise.

There is for both models an improvement due to the visual input on the recognition of noisy acoustic
stimuli. However, the improvement is higher for Model RM than for Mode! RD (see Fig. 6), which is not
due to a ceiling effect, since this happens even in cases where Model RM is already better than Modsi
RD in the auditory-alone condition. Altogether, Model RM is clearly the best for audio-visual inputs,
which shows that it takes a better advantage of the visual input than models integrating in an auditory
space. This is probably due fo the fact that there is in the (X, Y, S) space a natural decomposition into
“visible” and “invisible” components, which makes the integration process much more efficient by
taking advantage of the complementarity.

Notice finally that the perceptual data are better than all modelling experiments, which is mainly due to
(1) the very simple (linear) structure of our classifiers, and (2) the fact that the /fe-g/, /g, &/ and /o, o/
distinctions were ignored in the psychological experiment.

CONCLUSION

Audio-visual fusion in speech perception seems to be characterized by four main principles:

1. There must exist a common representation space where the auditory and visual inputs are projected
and may be matched and compared before a final lexical decision is taken;

2. This representation must be confinuous and it is lkely to preceds phonetic processing (early
integration);

3. In order 1o exploit optimally the complementarily between audition and vision, this common
representation space is unlikely to be the “dominant” auditory space. Indeed, the complementarity
means that audition is not entirely dominant, but rather that each modality has its own preferred tasks,
though audition is globally the speech modality. Automatic audio-visual speech recognition systems
can take advantage of this fact;

4. The fusion must be tuned by some principle related to the precision of a given modality for a given
decoding task, the precision being probably related to the inverse of the variance of a given
perceptual estimate. All these facts can provide some guidelines to research on synihesis of speaking
faces (Benoit, 1992), by telling us which are the most important parameters of a face that have to be
synthesized accurately. Hearing-aid systems should also benefit of a better knowledge of what are the
most imporiant acoustic features that need to be presented to the hard of hearing in order to
complement speech reading.

The problem of intersensory integration in speech perception remains a challenge for future research,
for which closer relationship between specialists of audition, vision and natural language will be
particularly welcoms.
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