PERCEPTION OF STOP CONSONANTS IN VCV UTTERANCES
RECONSTRUCTED FROM PARTIAL FOURIER TRANSFORM INFORMATION

Jialong He, Li Liu and Ganther Palm
Department of Neural Information, University of Ulm, Germany

ABSTRACT - Identification experimenis were performed to investigaie perception io
intervocalic stop consonants in Vowel-Consonant-Vowel (VCV) uiterances. The VGV
uiterances were reconsirucied from the following partial Fourier wansform information:
(1) Long-term Fourier phase spectra; (2) Signed magnitude specira - Fourier magnitude
specira combined with 1-bit phase spectra. It was shown that the percent of correct
identification to the intervocalic consonanis was improved from 68% to more than 93%
for the first type of stimuli after applying an iterative reconstruction algorithm with enough
phase samples. Near-perfect performance could be reached for stimuli reconstructed
from signed magnitude spectra. The effects of different initial guesses fo the unkmown
parts and vowel context were discussed.

1. INTRODUGTION

in the polar representation of a signal's Fourier fransform, there are two components: phase and
megnitude. For an arbitrary signal, in general, it is not possible to restore the signal only from its
Fourier phase or magnilude alone. However, if a signal satisfies certain conditions, it can be
completely restored from only its Fourier phase or magniiude. For example, if a signal satisfies the
minimum phase condition, i.e., the log magnitude and the phase are related through the Hilbert
transform (Oppenheim and Schater, 1975), it can be exactly recovered from either the magnitude o,
to within & scale facior, the phase of its Fourier ransform. In many practical applications only partial
frequency domain information is available, it is therefore desirable fo reconstruct the original signal
from this partial information. Signal reconstruction from partial Fourer ransform information has
drawn great aftention to different authors, especially in image processing and other mulii-dimensional
signal processing areas. Some significant results have been developed. Hayes ef al. (1980) have
proposed a set of conditions under which a finite extent one-dimensional (1-D) or multi-dimensional
{MD) sequence is uniquely specified to within a scale factor by the tangent of its Fourier transform
phase. Conditions have aiso been developed under which the signal can be specified to within a
wansiation, sign, and a ceniral symmelry by Fourier magnitude (Hayes, 1982). Hove et al. {1983)
have extended these conclusions and given another set of restrictions under which both 1-D and MD
are completsly spscified by their signed magnitude (magnitude with one bit phase information ai each
frequency component). Curiis ef &l (1985) have developed some theorstical resulis which state
conditions under which two-dimensional signals are unigusly specified to within a scale factor by the
sign of the real part of the Fourier transform. Unlike that in image research, fittle attention has been
focused on the reconstruction of a spesch signal from its partia} Fourier information. One reason is
that the phase spectrum was generally accepted as less or unimportant for an acoustic signal.
However, Oppenheim and Lim (1981) studied the role of Fourier phase in the representation of a
speech signal and compared it with that of Fourier magnitude. They demonstrated that, in many
contexts, the phase contains very important information. Recent studies also shown that the phase is
very important for perceiving consonants when analysis window size is relatively larger (Liv et al.,
1992). There are also a number of practical applications, e.g., speech coding, in which phase may
play an important role. In this paper we present some experimental results of identifications to the
intervocalic stop consonants in Vowel-Consonant-Vowel (VCV) signals reconstructed from phase
specira or signed magnitude spectra. An accelerated iterative algorithm was also discussed. it was
shown that the consonant identification rate to the phase-only stimufi improved from 68% to more than
93% afier applying the iterative algorithm. Near-perfect identification performance could bs reached
for the stimuli reconstructed from signed Fourier magnitude spactra.

Il ALGORITHM
Despite the fact that, under cerfain conditions, a signal can be uniquely specified by its partial Fourier

wansform information, practical and efficient algorithms to reconstruct it from this partial information
generally demand additional constraints. One of the magnitude-retrieval algorithms called closed-form
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solution was proposed by Hayes (1980). Since this method needs 10 solve a set of N-1 linear
equations, where N is the total number of unknown speech samples, it will lead to numerical problems
and suffer severe roundoft errors when N becomes very large. The most commonly used method for
signal reconstruction from partial information is an iterative technique developed by Gerchberg and
Saxton (1972) and Fienup (1978) for reconsfructing a signal from magnitude information and by
Quatieri (1981) for reconstructing a signal from its phase under the assumption that it is a minimum
phase signal. In the iterative solution the fransformations between time and frequency domains are
repsatedly invoked. in each domain the known information or the constraints about the signal are
incorporated into the current estimation. The basic algorithm is shown schematically in figure 1.
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Figure 1. Block diagram of the basic iterative algorithm for reconsiruction a signal
from partially lmown information.

To speed up the rate of convergence, we employed a modified version of the basic algorithm with the
adaptive relaxation coefficient (Hayes, 1982). The following is detail of the algorithm. For the sake of
simplicity, we first define four operators:

(1) F is a discrete Fourier wansform operator: F {S(n)} = {A(k) , P{k)}

(2) 7" is an inverse discrete Fourier transform operator: 7 "{A(k) , P(k)} = {S(u)}
(3) Tis a time domain constraint operator: T{S(n)} = {S.(n)}

(4) Q is a frequency domain constraint operator: Q {A(k) , P(k)} = {A.{k}, P, (k)}

where S(n) is a speech signal, A(k) and P(k) are its magnitude and phase spectra. S.(n) is the
signal that satisfies the time domain constraint T. A.(k) and P, (k) are the magnitude and phase
spectra that satisfy the frequency domain constraint Q.

STEP 1: Initlal guesses to unknown parts

To reconstruct a signal S(n) from its phase specirum, we should make an initial guess to the unlmown
magnitude spectrum A°(k). Similarly, 1o reconstruct a signal from its signed magnitude spectrum, we
select an initial guess 1o the uninown phase specirum P°(k). The initial gusss S°(n) can be obtained

by applying the inverse discrete Fourier transform 3‘1 to the magnitude and phase specira.
STEP 2: Applying time and frequency domain constraints
Suppose that $*(n) is the estimation for S(n) at the kth iteration and the intermediate result of {k+1)}th
estimation is defined by:
§$¥'@ =37 0F T{s* )} 0]

where the four operators are defined as above and applied to S¥(n) in precedence from right o left.
In fact, this is the basic iteration procedure shown in figure 1.

STEP 3: Calculating adaptive relaxed coefficient of
An adaptive relaxation technique for the iterative algorithm is defined as:
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5 (n) = (1- o J§* () + ¥ S K () @

where o is known as the relaxed parameter. One possibility for increasing the rate of convergence is
to find a value of o which minimize the error between the (k+7)ih estimation and the Bime domain
constrainis. Suppose that S(n) is a N point signal and the first M (<N} points are known, e.g., time
limited. The mean-square error is defined by:

M
B= )_“1)(5““(11)—5(:1))2 @)
o kel . . . dE
Substituting S5 (n) with equation (2) and setting PR 0:
led

M ~ M.
2= %(S(n)=Sk(n))’(5kﬂ(n)—sk(n))/ Zo(s**‘m)—sk(n))z (@

Since the value &* obtained from the above expression does not guarantee {he iterative algorithm to
be nonexpansive, we selected the relaxed parameter as:

" <0
ot ={&* 0gat<2 S
2 a2

The estimation for S(n) at (k+1)th iteration can be calculated from equation (2).
STEP 4: if (ke7) « desired lteration number; go to STEP 2
ill. EXPERIMENT

A. Speech signals

The original signals consisted of all 12 combinations of 6 stop consonants b, p, t, d, k, g/ with two
vowels /a, i/ and were recorded in a sound-isolated beoth. The two vowels in each VGV syilable were
identical (e.g. /apa/, /iki/). The VCVs were read by 5 untrained German speakers in isolation with
approximately equal stress on the two syllables and were digitized at 16 kHz sampling rate with 16-bit
precision. The length of an original VCV signal was about 512 ms (8192 samples).

B. Sublects

Twelve paid students served as subjects. All were native German speakers with no known history of
either speech or hearing disorders. They were tested in small groups (2-4 subjects) in a sound-
isolated booth. All stimuli were presented binaural over headphones at a comfortable listening level.
The subjects were instructed to write down the perceived intervocalic stop consonant in the
designated blank on the response sheet.

C. initial guesses
To test the signals reconstrucied from their phase spectrum, three kinds of initial guesses to the
unknown magnitude A% (k) were used in our experiments:

(1) A%(k) : a constant specirum;
(2) A%(k) : an averaged spectrum from uncorrelated utierances;
(3) AS(K) : an averaged specirum from /aCa/ utterances;

Anocther type of stimuli were reconstructed from the signed magnitude spectra. The initial guess to the
magnitude and phase specira were:
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Al(k)=[A, (k)

. {0 A& <0 6
Po= n A()>0

e A)20
where A,(k) was the signed magnitude specrum.

D. Time domain consiraints

We tested two different time domain constraints 71 and 2. (1) U1: signals were time limited within
512 ms, i.e. values outside of this range were zero. Since a time signal is periodically repeated by
discrete Fourier transform, to prevent time alias, we have to use the DFT with more than 8192 points
(in our case 16384 points). In another word, we should know more phase or signed magnitude
samples. When 71 was applied i a signal, the valuss oulside the range of 8192 points would be set
to 2er0. (2) T2: We supposed that the first 4096 samples of a VCV signal, normally the first vowel,
wers lmown. In this case, we could use 8192 point DFT. When applying 72 fo a signal, s first 4095
points would be replaced with the known samples of the VCV.

E. Frequency domain consiraints

Two kinds of frequency domain constraints were used in our experiments. (1) Q1: signals’ phase
speciva were known. When applying Q1 to a spectrum, the phase would be replaced with the known
phase spectrum and the magnitude spectrum kept unchanged. (2) 02: signals’ signed magnitude
spectra were known. When 02 was applied to a spectrum, the magnitude and ohase speclra were
obtained from:

Ay =|A &)
[P"(k) (A®<0, -n/2sP*® <n/2)

B k)= a (A®20, n/ZSPk(k)<3n/2) ™
Pr®+n other

where A,(k) is the known signed magnitude spectrum, PX(k) is the phase spectrum before applying
{2. For clarity, Table 1 summarized our 10 categories of stimuli according to the different initial
guesses fo the unknown parts and constraints. Stimuli in category J were original signals and were
included here for comparisons.

V. RESULT

Figure 2 shows the percent of correct identification to intervocalic consonants as a function of
categories under two different vowel contexis {/a/ and /). The identificaion rate for stimuli
synthesized by combining phase specira with a flat magnitude spectrum, without applying iteration
algorithm, was also included in Figure 2 (denoted as 'Flat)) for comparisons. It was excerpted from
another experiment (Liu et al. 1992). By examining the stimuli reconstructed from phase (categories
A-F). it is easy to see that the identification rates for the stimuli with ime domain constraint 2 are
relafively higher than that with T1. An explanation is that when reconstructing a signal with 71 (as in
category A, C and E) we supposed the samples outside the range (0, 8191) were zero, on the other
hand, by using T2 we knew a part of nonzero samples which contribute to both magnituds and phase
specira, consequently, this would be more helpiul to restore the original magnitude spectrum than in
the case of T1. Besides, data from acoustic measurements and from perception experiments indicate
that both formant ransitions from the first vowel to the closure (VC transitions) and transitions out of
the closure info the second vowel (CV transitions) contribute to ientifications of the intervocalic stop.
If the first haf of a VOV speech signal is lmown, as in the case of category B, D and F, a part of
original information about the consonant is actually preserved. The intervocalic stop consonants may
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be identified with a relatively higher performance even if the refrieval process was not very successful.
In figure 2, it has also been shown that the iterative procedure improved the identifiability of
consonanis significantly for phase-only stmuli than that without iteration (labeled as Flat).

]

Percent Correct identiflcation (%)

i J Flat

A B C D E F G
Categorles (Vowst [al/Tl})

Figure 2. The percentages of correct consonant identification and their standard
deviations as & function of the categories.

The vowel context also has some effecis on the consonant identification when the initial guess to the
unkmown magnitude spectrum is flat (category A) or averaged from all /aCa/s (category E). The effect
of vowel context in the case of category E is easy to understand since the initial guess to magnitude

specirum in category E contained more information about vowsl /a/ than /¥, so that /aCa/ signals

should be restored better than /iCi/. However, no convincible explanation was found to the fact that
vowel context had an effect in the case of category A in which the initial guess to the magnitude was a
flat spectrum. There was no difference on identification performances to the original signals under
different vowel contexts (category J). The initial guess fo the unknown magnitude was found to be
another factor which influences the identification rates. The /aCa/s could be identified much better
when the initial magnitude guess contained information about vowel /a/ (category E) than when it
didn't (category A and C). Correspondingly, the lowest identification rate was obtained for the fiCils
when the initial magnitude guess contained information contradicting the vowel context /. Near
perfect identification performance was obtained for the stimuli synthesized from signed magnitude
spectra (category G and H). The identification rates was significantly improved afier applying the
iterative procedure in comparison with the stimuli constructed by simply combining the known
magniiude specira with 1-bit phase specira {category ).
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Category | Initial time freq. FFTAFFT Known information
guess | consiraint | consiraint size
A Af(k) A o1 16384 8192 point phase
B A:’(k) 2 ot 8192 4086 phase, 4096 signal
C A‘z’(k) T ol 16384 8192 point phase
D Ag(k) T2 o 8192 4036 phase, 4096 signal
E Ag(k) Tt ot 16384 8192 point phase
F Ag( k) T2 o 8192 4096 phase, 4096 signal
G P°(k) Nl ford 16384 8192 point signed magnitude
H P%(k) 2 02 8192 4086 signed magnitude, 4096 signal
1 P°(k) none none 8192 4096 signed magnitude
J none none none 8192 8192 sample

Table 1. Summary of 10 categories of stimuli
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