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Abstract

From 33 speakers in the Timit database a total of around 88 vowel utterances
was extracted. These represent eight vowel categories. Each waveform segment
was processed, first by taking a FFT on 32 msec frames, then by binning into 12
mel-spaced frequency bands. This way each frame is described by 12 numbers,
hence it becomes a point in JR'?. Each vowel utterance is a series of points and
a short trajectory in IR'2. The eight vowel classes become eight clusters of points
in the speech space.

The covariance matrix and the centers of the clusters were computed and di-
mension estimates of each vowel cluster by Principal Components Analysis show
that the centers of the eight vowel clusters are all situated close to a plane and
their principal axes make a small and consistent angle with respect to this plane.
This confirms the results of Plomp e.a. (1969), who found the vowel space to be
essentially 2 dimensional. Projecting the centers of the vowel clusters to the plane
gives a representation of the vowels which is very similar to the conventional F1-F2
plot and the vowel diagram.

1 Introduction

1.1 Description of vowel sounds

Vowel sounds have been described in terms of perceptual differences (Pols e.a., 1969)
and differences in their articulatory (Plomp e.a., 1969) and physical properties (Pols
e.a., 1973). The description of the physical properties of speech sounds is done by
describing the spectrum of the acoustic speech signal at a certain point in time. This
can be done by determining the formants in the spectrum (Pols e.a, 1973} by finding
LPC coefficients (Makhoul, 1975) or by computing the filterbank coefficients (Plomp
e.a., 1969).

Filterbank coefficients to describe the physical vowel properties give results that can
very easily be used for automatic speech recognition. Description of the speech space
by LPC coefficients can be considered to be a continuous transformation of the 12
dimensional filterbank space we use in this paper (Togneri e.a., 1992).

222



1.2 The vowel data

We used vowel segments from 33 males in the TIMIT speech database CD-rom (DARPA,
1988). Eight vowels were chosen for further analysis, and each utterance was checked
for clicks and random noises. Each of the resulting vowel groups contains 80 to 140
utterances, with a duration between 0.05 and 0.2 seconds In the notation used for the
TIMIT database, followed by IPA notation, the vowels are the following: AA /fa/, AE
J=/, AH /A/, AO /D/, EH Je/, IH /1/, 1Y /i¥/ and UX [y/.

Vectorization of the speech fragments to 12 dimensional simulated filterbank coeffi-
cients was done, in C on SUN Sparc2 workstations. A FFT over 512 points with a 200
point advance was applied to the speech data, previously digitized at a frequency of 16
KHz. For every 512 point frame with a duration of 32 milliseconds the resulting values
were reduced to 12 filterbank coefficients using a simulated filterbank of 12 overlapping
filters. The filters are distributed on a Mel scale over the frequency range from 0 to 5
kHz.

Each vowel utterance, as it has been described above, is now represented in 12 filter-
bank values per frame of 32 msec. Each frame can be looked upon as a point in a
12 dimensional representation space. A series of frames, belonging to the same utter-
ance, can be seen as describing a track through this representation space. The frames
of several utterances of the same vowel spoken by different persons, form overlapping
clusters in the 12 dimensional space. The centroid of each cluster, the means of all the
frames for one vowel, is regarded as representing the location of the vowel in the 12 D
space.

2 DMethod: Structure of the vowel data

2.1 Calculations on the data

To describe a cluster of points in the representation space the covariance matrix of all
the points may be computed. Next the eigenvalues and eigenvectors of the cluster can
be computed.

The number of significantly large eigenvalues of the cluster denotes the number of
important dimensions, and their relative importance, within the representation space.
These are called the principal components of the cluster. The square root of the
eigenvalue gives the length of the radius of the hyperellipsoid along the corresponding
axis of the subspace. These corresponding axes are the eigenvectors and they indicate
the positioning of the cluster in the representation space, the shape of the hyperellipsoid
is described by the eigenvalues.

2.2 Fitting a plane using principal components analysis

By taking two orthogonal vectors in the 12 dimensional simulated filterbank space we
define a plane in that space. Projecting all the datapoints onto this plane will give a
two-dimensional view through the space [3]. Let u, v be two orthogonal vectors in IR",
i.e. vu=vv=1and uv=0.

Then for every x € IR* (x-u,x-v) is the projection of x onto the plane spanned
by {u,v}. By operation on the window {u,v} by an orthogonal nxn matrix we
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may view the points in IR™ from different orientations. By changing the position of
the plane, according to computed best-fit vectors, or by rotating it at random in the
12 dimensional space, we obtain different views of the clusters in the 12 dimensional
space.

To find the projection plane that gives the best discrimination possible between the
centroids of the clusters, we compute the Minimized Squared Error (MSE) plane for the
centroids. With the relatively low number of 8 different vowels we get 8 centroids in the
12 dimensional representation space. It is obvious these points must occupy a subspace
from at most 7 dimensions. Possibly this subspace has even much lower dimensions.
To find out if it is possible to fit a plane in the 12 dimensional representation space
through the 8 centroids of the vowel clusters we must minimize the mean of the squared
distances between all centroids and the proposed plane. This is done by computing
their covariance matrix. This means we have to find the eigenvalues and eigenvectors
of this cluster of 8 points. The proportion of the eigenvalues indicates the importance
of the respective dimensions of the multidimensional object in the 12 dimensional
representation space. The 2 eigenvectors that correspond with the 2 largest eigenvalues
describe the MSE plane for the 8 points.

3 Results: Dimension of the vowel data

3.1 Relative positioning of the vowel clusters

In Figure 1. a graph shows the square root of the eigenvalues in descending order for
each vowel cluster. The square root of the eigenvalue represents the length of the radius
for that dimension of the hyperellipsoid. The 12 eigenvectors form an orthogonal basis
for a 12 dimensional space that is located within the 12 dimensional representation
space. For each of the 8 clusters this new basis is different, "adapted” to the best fig
on the cluster.
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Figure 1. The decreasing values of the square root of the 12 eigenvalues for each vowel cluster.
However, if we compare the most important dimensions it can be seen that the vowel
clusters are located in similar positions in the representation space. The direction of
the first eigenvector of each cluster, the first principal component, is quite similar for
all clusters, and the angles between them are between 5 and 19 degrees. This is a very
small angle in a 12 dimensional space.
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The shape of the different vowel clusters is also similar. The radius of the first dimension
(the square root of the largest eigenvalue) is on average twice the radius of dimension
2. Dimension 2 and 3 are often very close and might easily be interchanged had the
data been slightly different. The same applies to the eigenvalues of the subsequent
dimensions, they decrease slowly as can be seen in Figure 1. which shows the decrease
of the square root of the eigenvalues for each vowel cluster.

3.2 FEigenvalues and eigenvectors of the 8 centroids, the MSE
plane

For the cluster that only consists of the 8 centroids of the 8 vowel clusters, in the 12
dimensional representation space, the covariance matrix and eigenvalues and eigenvec-
tors can also be computed Table 1. lists the 8 centroids, in 12 dimensions. Showing
their values in the 12 filterbank region spanning the frequency range from 0 to 5 kHz.
Filter | AA AE AH AQ EH IH 1Yy UX
71.48 | 70.88 | 71.87 | 69.98 | 71.70 | 70.94 | 70.66 | 70.09
79.32 | 78.94 | 81.00 | 79.08 | 81.74 | 81.39 | 78.97 | 78.75
88.19 | 85.58 | 87.41 | 86.81 | 86.46 ) 79.16 | 71.90 | 71.18
88.28 | 81.85 | 82.62 | 85.13 | 78.44 | 69.46 | 63.40 | 62.79
84.01 | 74.13 | 79.67 | 77.99 | 72.96 | 64.01 | 57.95 | 59.21
78.48 | 74.33 | 76.83 | 65.62 | 73.54 | 64.50 | 56.67 | 61.58
68.67 | 75.17 | 67.77 | 57.74 | 74.55 | 69.74 | 61.72 | 66.22
64.77 | 69.65 | 63.04 | 56.81 | 70.03 | 68.99 | 68.55 | 66.45
62.83 | 66.70 | 62.66 | 56.75 | 67.71 | 66.75 | 68.38 | 61.91
59.76 | 60.70 | 60.93 | 55.12 | 63.14 | 61.51 | 63.95 [ 57.93
57.23 | 59.05 | 58.58 | 52.31 | 61.23 | 60.12 | 61.73 | 57.15
49.38 | 51.56 | 49.88 | 44.89 | 52.08 | 40.82 | 49.96 | 44.85
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Table 1. The centroids of the vowel clusters, in the 12 dimensional filterbank spacespanning
the frequencies from 0 to 5 kHz.

The 7 values for the squared root of the eigenvalues computed from the cluster of cen-
troids are: 16.18 8.60 3.17 2.09 1.58 0.50 and 0.19. The first 2 eigenvalues are
relatively large and the third and fourth dimension could have some influence, whereas
the other 3 could easily be neglected.

3.3 Angles between principal axis of vowels and the MSE
plane

The smallest angle between the MSE plane for the 8 means of the vowel clusters and
the first eigenvector of each separate vowel cluster lies between 19 and 27 degrees, with
a mean of 22 degrees. For every vowel cluster this smallest angle can be found in Table
2.

To find the largest angle & between a vector ¢ and a plane, the latter defined by 2
orthogonal vectors a and b, the best fit angle & has to be found for which the vector
cosar vector a + sina vector b gives the largest angle 8§ with vector c.
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AA|AE|AH | AO |EH |IH |IY | UX
21 | 24 |22 |19 | 27 [ 2221 22

plane formed by the first and second eigenvector of the means of the vowel clusters.

3.4 Projecting the centroids of the vowel clusters to a plane

In Figure 2. the centroids of the vowel clusters are projected onto the plane spanned
by the first two eigenvectors of the cluster of centroids, which is the Mean Squared
Error plane mentioned before.
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Figure 2. The diagram showing the projection of the 8 centroids onto the plane defined by
the first two eigenvectors (the MSE plane).

4 Conclusions

4.1 The centroids of the vowel clusters in the speech space

Projecting the 12 dimensional datapoints to the 2 dimensional MSE best fit plane
shows the configuration in Figure 2.

The vowel space can sufficiently be described as a flattish 3 dimensional object. A
diagram that includes the third dimension suggests a possibly wedge shaped space but
to confirm this more different vowels, covering the whole range, should be added to the
speech data.

Projection to the plane determined by the first two eigenvectors of the cluster of cen-
troids shows a strong similarity to the plot of the first two formants, F'1 and F2, of the
vowels. This is not really surprising, because F1 and F2 of the vowel indicate the peaks
in the spectrum, which, in turn, will generate the largest eigenvalues. The projection
to the plane given by the first and third eigenvector, however, does not look like the
plot of F1 and F3.
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4.2 The vowel clusters in relation to the MSE plane of the
centroids

Considering the relatively small angles between the first eigenvectors of the vowel clus-
ters we may conclude the vowel clusters are parallel positioned in the 12 dimensional
representation space. The first principal axis of the clusters could indicate the loudness
of the speech signal.

As can be seen in Table 2. the angles between the principal components of the clus-
ters and the plane are very similar, we might visualise this as the MSE plane with 8
ellipsoids, the vowel clusters, lengthwise sticking out of it.

4.3 Automatic Speech and Speaker Recognition

Speculating as to what the several principal components could be representing we
think that the first eigenvector could well determine the loudness of the speech signal.
Some other eigenvectors can indicate the place of the cluster relative to the vowel
plane. And maybe the distinction between different speakers can be made using only
a few of the principal components. The techniques described can be used in automatic
speech recognition to classify vowels. Similar techniques have been tested for vowel
recognition. The same strategies as described above could be used for consonants. The
properties of the vowel clusters, having more important eigenvalues and eigenvectors
than the cluster of centroids, may be of use to design automatic speaker recognition
systemns.
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