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ABSTRACT - This paper investigates low bit rate coding of high quality speech
and music signals using the discrete wavelet transform (DWT). Compression is
first exploited by eliminating wavelet coefficients that are zero or near zero in
magnitude. The remaining coefficients are then uniformly quantized using 8
bits. Identical experiments are carried out with the DCT and the FFT. In each
case, subjective quality and the segmental SNR are recorded to enable accurate
comparison with the DWT. Also the effects of frame size, number of vanishing
moments, and levels decomposed in the DWT, on the subjective quality and seg.
SNR are examined. More efficient techniques for the quantization of wavelet
coeflicients are currently considered with the aim of reducing the bit rate, while
maintaining near transparent quality.

INTRODUCTION

Digital coding of high quality speech and music signals is becoming a very important issue in the
fields of telecommunications and signal processing. Several strategic applications which require
high quality digital speech and music at low bit rates are emerging. These include digital
audio broadcasting, multimedia/ hypermedia applications, satellite TV and teleconferencing.
Monophonic compact disk (CD) quality audio is characterized by the high bit rate of 705 kb/s
(44.1 kHz sampling frequency and 16 bit PCM). Similarly, uncompressed wideband speech is
characterized by the high bit rate of 256 kb/s (16 kHz sampling frequency and 16 bit PCM).
Efficient transmission or storage in the above applications requires a compression scheme that
is equally suited to coding high quality speech and music signals.

Several attempts have been investigated for “transparent” coding of high quality digital audio
at low bit rates. Transparent means that no audible difference exists between the original signal
and the coded and reconstructed signal for all possible ears. Most previous methods use either
subband coding (Brandenburg and Stoll, 1992) or transform coding (Johnston, 1989). The
majority of schemes are perceptually based, exploiting the masking properties of the human
hearing process. This is the phenomenon whereby a weak (noise) signal is made inaudible by a
simultaneously occuring stronger {audio) signal. For each audio frame, the results of a masking
threshold calculation are used to adaptively allocate bits to either the subband signals in the
case subband coders, or the discrete cosine transform (DCT) coefficients in the case transform
coders.

It is important to notice that the compression schemes for wideband speech are different in
several respects to audio coders. One difference is the lower sampling frequency of 16 kHz
which is used in the CCITT G.722 wideband speech coding algorithm (Noll, 1993). Higher
sampling rates result in oversampling and are not necessary in wideband speech applications.
Also wideband speech coding algorithms are not perceptual coders. The CCITT G.722 coder
splits the speech signal into only two subbands by a pair of quadrature mirror filters. It does not
use a masking threshold calculation to allocate bits to the two subbands. Instead the lower and
higher subbands are ADPCM encoded with fixed bit rates of 48 kb/s and 16 kb/s respectively.
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Recently, the wavelet transform has been investigated for compression of CD quality audio
(Sinha and Tewfik, 1993). Unlike the Fourier transform, the wavelet transform is characterized
by a constant relative bandwidth or “constant-Q”. This is attractive for coding audio signals
since audiological research has shown similar properties in the human ear. The ear integrates
sounds over regions of frequencies called “critical bands”. Below 500 Hz, the critical bands
are 100 Hz wide, while above 500 Hz, the critical bands are approximately a third octave. In
subband coding, the frequency ranges of the decomposed subbands cannot be made the same as
the critical bands. On the other hand, the discrete wavelet transform (DWT) and in particular,
the wavelet packet transform (WPT), can be used to obtain a subband decomposition very close
to the critical band divisions. The advantage here is that a more accurate masking model can
be calculated, which in turn leads to a reduction in bit rates.

This paper presents the results of preliminary research into the compression of both CD quality
music and wideband speech signals using the DWT. Firstly a background of the DWT is pro-
vided. A description of simple compression tests is performed and results with the DCT and
FFT are then given. Finally, conclusions are made on how further reductions in bit rates can

be achieved using the DWT.
BACKGROUND-THE DISCRETE WAVELET TRANSFORM

Wavelets are a new family of basis functions for the space of square integrable signals (Daubechies,
1990). A signal f(t) can be representated by translates and dilations of a single wavelet W(t) as
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where b(j, k) = [ f(t)W (2t — k)dt and a(J, k) = [ f(t)g(2/t — k)dt. This expansion provides a
multiresolution decomposition of the signal f(t). The coefficients b(j, k) represent details of the

original signal at different levels of resolution j and coeficients a(J, k) represent an approximation
of the original signal f(t) at resolution J. The wavelet W(t) is obtained from a scaling function

g(t) as ‘ot
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where cj are the coefficients that define the scaling function, g(t), which obeys the dilation
equation given by:

g(t) = crg(2t - k) (3)
k

To construct the wavelet W(t), the coefficients ¢y must satisfy certain conditions. In most cases,
attention is restricted to wavelets with compact support i.e. ¢ is nonzero only for 0 < k < K —1.
Since g(t) is a low-pass function normalized such that [ g(¢)dt =1,

K1
E cp =2 (4)
k=0
Similarly for orthogonality of the translates and dilates of g(t) we require
K-1
> CrChizm = 2om (5)
k=0

where 8o, is the Kronecker delta function. To obtain wavelet coefficients, fix that decay
quickly to zero, another condition is placed on the coefficients cz’s

S-1)k k™ =0 m=0,1,2,...,p— 1 (6)
k
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A wavelet W(t) obeying (6) has p vanishing moments.

Mallat (1989) has shown that the discrete wavelet transform can be implemented by a recursive
algorithm. This is done by using the coeficients ¢, as the filter coefficients of a pair of quadrature
mirror filters, G and H (see figure 1). The output of the low pass filter, G, is the approximation
of the input signal for that level. While the output of the high pass filter, H, is the detail for that
level. The impulse response of the low pass and high pass filters are related by the equation,

g(n) = (-1)"h(1 - n) {7

Here the coefficients a(J, k) and b(j, k) are computed recursively using the efficient pyramid
algorithm proposed by Mallat (1989).
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Figure 1. Discrete Wavelet Transform Decomposition

COMPRESSION AND QUANTIZATION OF WAVELET COEFFICIENTS

To assess the usefulness of the discrete wavelet transform in audio compression, some simple
tests were performed on three test signals (two music and one speech). The music signals were
sampled at 44.1 kHz and 16 bit PCM. The speech signal was sampled at 16 kHz and 16 bit
PCM. Each signal was divided into small frames and the DWT was computed. Thresholding
was then used to remove the wavelet coeflicients that were zero or near zero in magnitude. To
be consistent, in each case compression ratios of 2:1 and 4:1 were used for each signal. For 2:1
compression, half the wavelet coefficients are kept and quantized, while for 4:1 compression only
one-quarter of the original wavelet coefficients are kept and quantized.

In our initial experiments, frame sizes of 512 and 1024 samples were used with 8-bit uniform
quantization. After quantizing the non-zero coefficients, the audio frames were then recon-
structed from the quantized coeflicients. This same procedure was carried out for both the DCT
and the FFT. As with the DW'T, this was done for compression ratios of 2:1 and 4:1. Efficient
techniques for quantization of coefficients, such as entropy coding, are currently being investi-
gated and implemented. Also further reductions in bit rates can be achieved by shaping the
quantization noise below a computed masking threshold. This is presently being designed and
implemented also.

COMPARISON OF SEG. SNR AND SUBJECTIVE QUALITY

It is well known that traditional SNR is not an accurate measure in assessing the performance
of audio coders. This is since the SNR does not take into account masking effects. However
to compare the performance of the DWT with the DCT and FFT, we chose to use listening
experiments as well as a segmental SNR calculation for each test signal. The segmental SNR is
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determined by calculating the SNR for each frame and averaging it over the entire signal. Table
1 lists the recorded segmental SNR for the Daubechies wavelet with 3, 10 and 20 vanishing
moments. The segmental SNR for the DCT and FFT are also recorded in the table. For each
case of the DWT, DCT and FFT the size of the frame used was 512 samples.

Listening tests were carried out on each of the audio segments using headphones. For the two
music segments the guality of the reconstructed signal was much higher for the DWT than that of
the DCT. For the wideband speech segment, the quality was very similar for both the DW'T and
the DCT. The subjective quality of the reconstructed signal was considerably worse, however, for
the each audio segment using the FFT. This is even though the average segmental SNR is very
close to the DWT and DCT. The DCT gave near transparent quality for the wideband speech
segment with 2:1 compression. Transparent or near transparent reconstruction was achieved
for the mozart segment using the DWT and 2:1 compression. This was apparent for 10 and
20 vanishing moments only. As the number of vanishing moments was increased from 3 to 10
vanishing moments, the reconstructed signal was of higher quality.

Method Compression Ratio | SNR-Guitar | SNR-Mozart | SNR-Speech

DWT - order 3 2:1 30.7 35.1 26.2
4:1 27.6 28.7 18.9

DWT - order 10 2:1 32.2 35.7 27.4
4:1 28.5 32.1 19.9

DWT - order 20 2:1 32.1 35.9 27.8
4:1 28.3 32.0 20.0

DCT 2:1 32.0 347 28.3

4:1 29.9 33.9 21.5

FFT 2:1 30.9 31.9 27.2

4:1 27.5 29.4 20.3

Table 1. Average Segmental SNR (dB) for the DWT, DCT and FFT.

EFFECT OF DIFFERENT LEVELS OF RESOLUTION AND FRAME SIZE

For a frame size of 512 samples, the DWT decomposes the original signal into 9 levels of reso-
lution and 1 approximation level. The effect of only decomposing the original signal into fewer
resolution leveis was examined. Table 2 lists the average segmental SNR for 5, 2 and 1 reso-
lution levels. This was done using the Daubechies wavelet with 10 vanishing moments and 2:1
compression. Compared to the complete DWT in table 1, the SNR is several dB higher for
the two music segments. Decomposing the audio signal into only 2 levels of resolution means
that the decomposed subbands are 0-5 kHz, 5-10 kHz and 10-20 kHz. After taking the wavelet
transform, the coefficients for the two detail levels are very small. Hence the removal of wavelet
coeflicients that are near zero occurs in the two detail signals. The remaining coefficients, most
of which lie in the approximation level or normal speech bandwidth (0-5 kHz), are then quan-
tized. The quality of the reconstructed music segments in each case was also higher compared
to the complete DWT. Conversely, very little increase in quality in the reconstructed speech
segment was apparent for different levels of resolution. Given the lower bandwidth of the speech
signal, a dramatic increase in speech quality is not expected.

Different frame sizes and their effect on subjective quality and SNR was also investigated. For
each audio signal, frame sizes of 256, 512, 1024 and 2048 samples were used. The segmental
SNR in each case is shown in table 3. Only small changes are apparent in the SNR for each test
signal. The quality of the reconstructed signals was also very similar for each frame size used.
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However it is expected that with signals containing a large variation in energy or containing
transients, such as castenets, special consideration should be given to the frame size. This is
currently being investigated also.

Leveis of Resclution | SNR-Guitar | SNR-Mozart | SNR-Speech
5 33.9 36.4 27.4
2 39.0 39.8 27.5
1 38.9 40.7 25.9

Table 2. Average Segmental SNR (in dB ) for the DWT and different levels of resolutions.

Frame Size | SNR-Guitar | SNR-Mozart | SNR-Speech
256 39.0 40.2 27.1
512 39.0 39.8 27.5
1024 38.8 39.3 27.9
2048 38.5 38.8 28.5

Table 3. Average Segmental SNR { in dB ) for the DWT and different frame sizes in samples.

CONCLUSION

The work performed here is only preliminary research into low bit rate speech and music coding
using the wavelet transform. The results from listening tests and seg. SNR, however, show that
the DWT is better suited than the DCT and FFT. Also since the DWT is more computation-
ally efficient than the DCT and FFT, it is very applicable to the task of audio compression.
Computation of a masking model and entropy coding of the wavelet coefficients are the two
further areas currently being investigated and implemented. This is being done with the aim
of reducing the total bit rate. At the conference, we will present more results on this ongoing
research.
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