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ABSTRACT - Some fast approaches to VQ training for the LBG recursive algo-
rithm are presented and compared. The computational efficiency is based on the
number of multiplications, comparisons, additions, and the sum of these three
mathematical operations. Experimental results in comparison to conventional
VQ training algorithms with speech data demonstrate that the best approach will
save more than 99% in the number of multiplications, as well as considerable
saving in the number of additions. The increase in the number of comparisons
is moderate.

INTRODUCTION

Vector quantization (VQ) (Gray, 1984) is a very efficient approach to data compression. The
encoder of VQ encodes a given set of k-dimensional data vectors X={X;|X; € R%j = 1,..., T}
with a - much smaller set of codewords C={C;|C; € R¥;i=1,..,N}N <« T). Only the index 1
is sent to the decoder. The decoder has the same codebook as the encoder, and decoding
is operated by table look-up procedure. The performance of data compressing depends on a
good codebook of representative vectors. )

The LBG algorithm (Linde et al., 1980) is an efficient VQ training algorithm. This algorithm is
based either on a known probabilistic model or on a long training sequence of data. The main
idea of this algorithm is the iterative application of a codebook modification operation where a
distortion measure D is used to compute the cost D(X;, C;) of reproducing the data vector X;
as the codeword C;. Ususlly the Euclidean distortion measure is used to compute the cost.
The iteration is terminated if the average distortion D(X, C) converges. The iterative procedure
is time consuming and it is difficult to apply the VQ training procedure for real time operation.

The computational complexity of the LBG algorithm can be significantly reduced if an efficient
codeword search algorithm is applied to the partitioning of the data vectors. Bei and Gray
(1985) proposed the partial distortion search (PDS) algorithm to reduce computational com-
plexity. PDS is a simple and efficient codeword search algorithm which has no exira siorage or
preprocessing requirements. Vidal (1986) presented the approximating and eliminating search
algorithm (AESA) in which the computation time is approximately constant for codeword search
in alarge codebook size. Soleymoni and Morgera (1987) proposed the absolute error inequality
(AE elimination to improve the speed of VQ search. Chen and Pan (1989) applied the trian-
gular inequality elimination (TIE) on VQ-based recognition of isolated words taking advantage
of the high correlation characteristics between data vectors of adjacent speech frames.

In this paper, previcus vecicr candidate and previous pariitioned centre, abscluie emor in-
equality (AEl elimination, partial distortion search (PDS) and 2-level partial distortion search,
hypercube approach, triangular inequality slimination (TIE) and codebook reorder method are
described and applied to VQ training algorithm.

The test materials for these experiments consist of iwo hundred words recorded from one male
speaker. The speech is sampled at a rate of 16 kHz and 13-dimensional cepstrum coefficients
are computed over 20 ms-wide frames with a 5 ms frame shift. A total of 20,030 analyzed
frames are used in the VQ training experiments.
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FAST VQ TRAINING ALGORITHMS
Previous vector candidate and previous partitioned centre

Inthe VQ training procedure, speech data has the property that the present vector to be classi-
fied is usually the same as or close to the classified result of the previous vector. Moreover, most
of the vectors which are re-estimated in a full-search actually remain in the same partitioned set
as for the previous re-estimation. With binary codeword splitting, the most probable partition to
which data vectors belong can be chosen from the separated centres of the partitioned set. The
previous vector candidate and previous partitioned centre can be used as tentative maiches in
the VQ training algorithm. Fig. 1 illustrates the relationship between the number of codewords
and the probability that data vectors remain in the same partitioned set after re-estimation in
full-search. For the fixed data vectors, the more codewords being generated, the larger is the
probability that the data vectors belong to the same {previous) partitioned set. The probability
is up to 0.949 for 1024 codewords.
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Figure 1: Relationship between the number of codewords and the probability of the data vectors
belonging to the previous partitioned set

Absolute error inequality
The absolute error inequality is the mathematical relationship between the city block meiric (or

1) and the Euclidean metric {or 1,). Given one codeword C, and the square error distortion
Dmin = D(X;, Ci).

h
if D X~ CP > VD, (1
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k
then Z(X}J - CP) > Doin, 2

pet

whare k is the dimension of the data vector and h < k.

This means C; will not be the nearest neighbour to X; if Eq. 1 is satisfied. The 2-level partial
distortion search is the standard PDS which is inserted in the 1, metric distortion calculation
and the square error distortion calculation. Fig. 2 shows the statistics for the elimination
probability of AEl at each feature dimension. The previous partitioned centre is used as
the initial codeword in this experiment. For 1024 codewords, 61.6% of impossible codeword
matches will be eliminated by using AE! in the first dimension where only 0.5% codewords
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cannot be eliminated (shown in dimension 14). The distortion of the surviving codewords is
calculated by PDS.
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Figure 2: the elimination probability of AEl at each feature dimension

Hypercube approach

Consider an input vector X; and let the smallest distortion found before checking C; be Dia;
then C, cannot be a better match than the previous one if

IX?_C€|>VDmin for 1SDSk (3)

For cepstrum coefficients, the energy compacts in the first cosfficiont. Normally, the absolute
difference of the first coefficients is larger than the difference of the other coefficients. ltis simple
and efficient to check the difference of the first cosfficient only for the hypercubs approach.

Triangular inequality slimination
Triangular inequality elimination is an efficient method for codeword search. Let V be the set

of data veciors and C be the set of codewords and x, y belong to the set V. On V, a distortion
measure is defined as a mapping d: V x V — R, which is assumed to fulfill the metric properties:

d{x,y) 2 0;d{x,y) =0 iff x=y 4)
dx,y) = dly, %) (5
d{x, y) + d{y, z) > d{x,z) 6)

Let C;, C;, C; be three different codewords and t be a test sample, then the following three
criteria are obtained.

e Criterion 1:
Given the triangular inequality

d(‘t, Cz)-}'d(t,C]) > d(C],Cz), (7)
if d(Cy, Co) > 2.4(¢,Cy), (8)
then dft, Cy) > aft, ). ©)
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o Criterion 2:
Given the triangular inequality

d(Cs, C) < dft, Cy) +d(t, Cs); (10)

if a(Cs, C) > dft, C,) + dft, Cy), (1)

then aft, €1) < dft, Cs). (12)

e Criterion 3:
Assume d(t, Cy) < dft, Cy).

Given d(Cs, Cz) > alt, Cy) — dlt, Cs); (13)

if d{C;, Co) < Aft, Cy) — 4l Cy), (14)

then dft, Cy) < dft, Gs). (15)

Criterion 2 and 3 can be merged to one criterion only, i.e.,

if dt, Ci) < [d(Cs, C3) — d(t, Ca)l, {16)
then daft, C;) < dit, Cy). (7)

To use Criterion 1, these distortions between all pairs of codewords are calculated in advance.
if Eq. 8 is met, then the computation of d{t, C;) can be omitted if d{t, C;) has already been
computed. Criterion 1 can be modified for square error distortion measurs. In the codeword
searching system, a table is made to store the one-fourth of square distortion between code-
words, i.e., store the value of d%(C;, C;)/4,fori=1,2,..,N;j=1,2,...,N. Here N is the number
of codewords. The overhead of criterion 1 is io establish distortion table in which N(N — 1)k/2
multiplications and N(N — 1)(2k — 1)/2 additions are needed. The physical meaning of Criterion
2 and 3 can be described as following :

If the codeword C;,1 # 1,2, doss not locate between the two concentric circles centered on
C, with radii d(t,C;) + d{t, Cy), the computation of its distoriion fo the test sample can be
omitted, i.e., if d(C;, C;) > d(t, C;)+d{t, Cy) or 4(C;, Cy) < dit, Cp) - d(t, C}), then eliminate the
computation of C;. For the special case d(t, C,) = dft, C;), Criterion 3 is in vain and Criterion
2 reduces to Criterion 1. Since Criterion 2 and 3 will induce square root computation, # is
simple and efficient 1o use Criterion 1 only. Fig. 3 illustrates the slimination probability using
TIE combined with previous partitioned centre in VQ training procedure. For 1024 codewords,
the elimination probability is 0.949.

Codebook reorder method

The codebook reorder method is 1o reorder these codewords so as to increase the search
efficiency. For the speech encoding, it chooses the nearest codeword of the previous frame
as tentative match to encode the present frame. From training data, calculate the probability
of these codewords to be encoded and arrange these codewords in the order of decreasing
probability. The codeword search is operated from the most probable codeword to the least
probable. It is simple and efficient to create a state table where these elements are indices
of codewords and arranged in the increasing order of distortion between the most probable
codeword and the other codewords. In the VQ training procedure, the previous vector candidate
or previous partitioned centre can be chosen as the most probable codeword so as to create
the state table. N(N — 1)(N — 2)/2 comparisons are opsrated to establish the state table using
bubble sort method.
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Figure 3: Relationship between the number of codewords and the elimination probability using
TIE

EXPERIMENTAL RESULTS

To verify these fast algorithms, the mathematical operations {multiplications, comparisons, and
additions) are used io calculate the computational efficiency. Nine approaches are compared
in VQ training procedure. The conventional exhaustive method is referred to as CVT-type.
P-type and T-type are approaches using PDS and TIE in codebook design. TPC-type is the
algorithm using previous partitioned centre as the most probable maiching with TIE and PDS
to reduce the iraining time. TPCR-type is the TPC-type with codebook reorder method. 1t is
called APC-type if the previous partitioned cenirs is used as the tentative maich with AE! and
2-jevel PDS to accelerate the training speed. The previous vector candidate instead of previous
partitioned centre in APC-typs is called APV-type. APTC-type is the algorithm combined TIE,
AE|, PDS and previous partitioned centre. APCH-type is the addition of hypercubs approach
to APC-type.

The experimental results for 8 codewords and 1024 codewords are shown in Table 1 and
Table 2. For general processor architeciure, the multiplication operation is more expensive
than the comparison operation and adgition operation. It is better to use APCH-type algorithm
for large codebook size and TPC-type algorithm or TPCR-type algorithm for small codebook
size. Table 1 and Table 2 also illusirate the ioial mathematical opsration number. In terms
of the total number of operations, TPC-type outperforms all of the above algorithms. It needs
exira computation time to generate the distortion table for TIE approach that is why the total
number of multiplications in ATPC-type and TPCR-type are larger than APC-type, APV-type
and APCH-iype for 1024 codewords. The codebook reorder method is not very efficient in
VQ training algorithm owing to the overhead of sorting precedure. 1n small codebook size,
TPCR-type is excellent. It is not superior compared with APCH-type, APC-type, APV-type,
ATPC-type and TPC-type for large codebook size.

CONCLUSIONS

in this paper, some fast VQ training algorithms are proposed and compared based on the
number of multiplications, comparisons and additions. Among these approaches, using the
previous partitiocned centre as the tentative match with hypercube approach, AE! and 2-level
PDS is the most suitable for computer architectures in which the complexity of comparisons
is negligible with respect to that of muifipiications. i outperforms the ofher aigorithms if the
combination of previous partitioned centre, TIE and PDS is used for the processor architectures
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method | mul. | cmp. | add. | sum [ saving in mul.
APCH 15821357 [ 185279 73.1%
APC | 588687250378 72.8%
APV 1590] 853 126.1[40.5 727 %

ATPC 1587|587 | 21.3]33.0 72.8%
TPC [5.63] 230 [15.0] 229 73.9%
TPCR [563 (230150229 73.9%
P 14.0 | 13.8 | 30.9[ 587 54.3 %

T 16.2 | 2.31 | 35.7 | 54.2 333 %
CVT [216] 1.36 | 46.0 | 69.0 0%

Table 1: computational complexity of VQ training for 8 codewords (x 10)

method | mul. [omp. | add. | sum | saving in mul.
APCH | 33.8] 481 | 663 | 1178 992 %
APC | 3471 | 680 [ 1082 | 1796 992 %
APV 58.6 | 812 | 1323 | 21%4 98.6 %
ATPC | 105 | 463 | 465 | 1033 97.4%
TPC | 143 ] 366 | 283 | 792 96.5%
TPCR | 143 | 5191 | 282 | 5616 96.5 %
P 777 | 777 | 1259 | 2813 811%
T 1887 | 453 | 3649 | 5989 541%

CVT [41097 315 | 7922 | 12348 9%

Table 2: compuiational complexity of VQ training for 1024 codewords (x 106)
such as those based on the Harvard architecture in which comparisons are computationally
expensive.
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