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ABSTRACT - Line Spectral Frequencies (LSFs) are the most popular parameters for
spectrum quantization in speech coders using linear prediction. We propose a new method
for the quantization of the LSFs, namely Fine-Coarse Split Vector quantization (FCSVQ).
The paper explains the principles of this methed, including training and optimization of the
associated codebooks. It is shown that this quantizer can be implemented efficiently with
negligible computational overhead compared to simple scalar quantization. Satisfactory
performance of the new method is verified through experimental simulations.

INTRODUCTION

Shori-term spectrum quantization is one of the major issues in low rate speech coders. To improve
the quality of reconstructed speech in these coders, it is recommended to decrease the spectral
coding distortion. This is not an easy task specially with few bits available. In linear-prediction (LP)
based speech coders, such as Code Excited Linear Prediction (CELP) described in federal standard
1016 {1991), the short-term spectrum is represented by a set of parameters extracied from a tenth
order LP polynomial. Among different parameters which could be used, the Line Spectral
Frequencies (LSFs) are most common. The ordered pairs of LSFs are also called line spectral pairs
(LSPs). Many different methods have been reported for quantization of the LSFs in the past, but the
main interest is for vector quantization (VQ) methods which have low bit rate.

it has been assumed that with the current methods, more than 20 bits/frame will be necessary to
quantize the entire tenth order LSF parameters by a single stage unstructured vector quantizer, if an
acceptable distortion and reasonable quality is required. Since neither the computational complexity
nor the memory requirement of such a quantizer is feasible for a real time speech coder, it is vital to
use decomposition methods such as split VQ and multi-stage VQ to reduce the complexity and
storage costs of VQ to an afferdable amount.

It has been shown that if the LSFs are divided into three subvectors (3-split VQ) about 24 bits/frame
are needed for vector quantization. The computational complexity is still around 0.32 MIPS (for 2-split
VQ the computation cost is about eight-fold of this), which is a considerable overhead for any low rate
speech encoder (Paliwal & Atal, 1991).

in general, two approaches have been suggested for decreasing the computational cost. The first
proposes the fast search methods for searching the same codebooks and some of them have more
storage requirements. The other reported techniques use structured codebooks for a more efficient
codebook search. Obviously these need entirely different and highly structured codebooks. These
methods also increase the storage cost. The proposed fine-coarse split vector quantization (FCSVQY)
is an example of the second approach.

This paper is organized as follows. The next section deals with the principles of proposed method.
Then the design of the related codebooks will be discussed. An experimental simulation based on a
CELP speech coder is also described. Finally, conclusions are presented.

FINE-COARSE SPLIT VECTOR QUANTIZATION

Fine-coarse split vector quantization combines the low computationai complexity of a structured
codebook with simplicity of the training stage of the unstructured ones. This generally results in a
proper codevector selection, which most of the time almost equals to the optimum choice. The
FCSVQ reduces the complexity of the quantization process significantly. Here, the concepts of this
method are reviewed and its application to spectral coding is explained.
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Principles

Fine-coarse vector quantization (FCVQ) was first introduced by Moayeri et al. (1991). Normally, it
contains two stages of quantization with two different but related codebooks. The fine codebook has
more codevectors than the coarse codebook. The input vector is quantized with the fine codebook,
which is usuaily a highiy siruciured codebook. Scaiar quaniization (SQ) and lattice vector quantization
{LVQ) are two possible schemes for fine quantization. Then the selected codevecior is mapped io
another codevector from the coarse codebook. The iatter transformation can be performed by a
simple look-up table with little computational overhead.

Figure 1 shows an example of a two-dimensional FCVQ, which gives a general idea of this quantizer
and the dependency between the related codevectors from the fine and coarse codebooks. In this
example the FCVQ method has been applied to the quantization of a two-dimensional vector. The
fine codebook is created by scalar quantization of each element of the input vector. The scalar
quantizer uses a uniform quantization table with 13 levels, so the fine codebook has 169 codeveciors.
The coarse codebook has only 5 codewords.

Figure 1. An example of FCVQ Voronoi cells for a two-dimensional input vecior

It is quite clear that the effective shape of the Voronoi cell related to each coarse codevector in the
FCVQ is the union of associated cells from the fine codebook. In other words, the shape of each
Voronoi cell approximates the related cell of a similar unstructured codebock by covering that with the
cells associated with the fine codewords. Obviously, as the size of the fine cells decreases (high
resolution assumption), the performance of this method converges to that of the unstructured VQ.

LSF quantization

Fine-coarse split vector quantization combines the idea of FCVQ with split vector quantization. This
method can be applied for efficient quantization of LSFs. The procedure is as follows. First, the LSF
parameters are derived from a tenth order linear prediction. This LSF vector is divided into three
subvectors with 3, 3 and 4 elements. Then each LSF is scalar quantized according to some
quantization table. in fact, this stage prepares the fine subvector. This subvector is transformed to a
codeword of the coarse codebook The transformation is accomplished through a look-up table

mapping.

For the implementation of the FCSVQ algorithm, in the fine quaniization stage, we have used the
same number of quantization levels for each LSF as the FS1016 standard. This is virtually equivalent
to 34 bits/frame. For the coarse quantization stage a codebook with the size of 256 is used for every
subvector. This scheme ends up with 24 bits/frame for the entire LSF vector. To generate the entry
for each look-up table, the indices (in binary format) of the scalar quantization of the elements in each
subvector are combined. This results in a singie binary word address for each subvector, which
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includes the indices of the quantized elements as sub-words. This address refers to the index of the
coarse codeword in the look-up table. This coarse codevector is the final quantized value of the
related LSF subvector. The latter index is also ransmitted as data to the decoder side, where 1t is
used directly as the entry to the coarse codebook for reconstruction of the final quantized L SFs.

In this study, a differential scalar quantization scheme has been used in the fine quantization stage.
The first element of each subvector is quantized independently by the ordinary scaiar quantization
method, but for the other elements in the subvector the difference between the LSF and the quantized
value of the previous L.SF is scalar quantized. It has been shown that independent scalar quantization
method is not efficient for LSF quantization, the reason for this is the monotonic increasing of the
LSFs (Sadegh Mohammadi & Holmes, 1994). Despite independent scalar quantization, the
differential quantization method concentrates most of the codewords in the area where the LSF vector
space is dense.

CODEBOOK GENERATION

As the previous explanation suggests, the current implementation of fine-coarse split vector
quantization needs one quantization table for the fine stage, three codebooks for the coarse stage,
and three look-up tables for the transformation. The training and optimization procedures for these
codebooks and tables will now be described.

Training

In this implementation of FCSVQ, the fine and coarse codebooks are trained separately, and then the
look-up tables, which link the codebooks, are prepared. The scalar quantization table is trained
sequentially. First the quantization levels for the first element of each sub-vector are found using the
algorithm suggested by Lioyd (1982). Then the same algorithm, which is also known as the Lloyd-
Max algorithm, is used to train the quantization levels for the difference between every LSF and the
previously quantized LSF in each subvector. One could also use other algorithms that provide a global
optimum quantization table.

In the next step, an independent unstructured coarse codebook is trained by the generalized Lioyd
algorithm described in Makhou! et al. (1985). Therefore, three coarse codebooks are prepared, one
for each of the fine codebooks. Of course, for the best resulls it is recommended that a global
optimum training algorithm is used to prepare the codebooks.

Then all possible combinations of scalar quantized subvectors in the same LSF partition are classified
by the codewords of the related coarse codebook. This extensive computation is performed once for
the three parts of LSF vector, and it is done off-line. The results are organized as look-up tables. The
combined indices of the scalar quantized LSFs in each subvector are used as the entry or address of
a cell of the table, which contains the index of the related codevector from the coarse codebook.

Optimization

Even if the optimum training procedures are used for independent training of each codebook, the
resutted FCSVQ will not be optimum. Nevertheless, several enhancement methods can be used for
further improvement of the FCSVQ performance. The reasons for this sub-optimality will be
addressed and the solutions will be explained.

Firstly, since the scalar quantization levels are trained sequentially, the resulted quantization table
causes more distortion compared to the situation in which a single step training algorithm is used.
The differential scheme inherently makes the sequential procedure inevitable, but hopefully one can
use an optimization procedure that provides better quantization table. This procedure is outlined here.
The proposed differential scalar quantization can be seen as a multi-stage vector quantization, in
which the codebooks have a particular structure, and are searched with a weighted distortion
measure. In this study, an improved version of the algorithm suggested by Chan et al. (1992) for
multi-stage VQ has been adapted for differential SQ and applied for optimization the scalar
quantization table.
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The coarse codebooks and look-up tables can be optimized jointly by the method offered by Moayeri
et al. (1991). In this iterative method first the look-up tables are considered to be optimal and the
coarse codebocks are recalculated. Then the resulting codebooks are assumed to be optimal and the
classification is repeated for finding the look-up tables. By using this technique, the distortion
gradually converges to a local minimum which provides less distortion. This method, after some
improvement for the current application, which will be discussed later, is used in our study.

Since neither the fine codebooks nor the coarse codebooks have Voronoi cells with fixed size, the
numbers of fine codewords which are associated with each coarse codevector are different. In fact,
the non-uniform distribution of the codewords in the vector space results in some coarse codevectors
having too many related fine codebooks and some too few. It has been observed in our simulations
that for the allocated number of quantization levels, in some paris of the vector space the density of
fine codewords is similar to that of the coarse codevectors or even less. As a result of this, some of
the coarse codewords will never be used and the effective size of the codebook will be slightly less
than its aciual size.

To alleviate this problem two approaches can be followed. The first approach is to increase the
number of scalar quantization levels, which will also increase the size of the look-up table and the
storage cost. In the second approach, one improves of the optimization algorithm that jointly
optimizes the coarse codebook and look-up table. All we need is a minor change in the iterative
optimization algorithm. That is, in each iteration of the algorithm, afier the classification of fine
codewords by the coarse codebook, each unselected coarse codeword is perturbed to the nearest
fine codevector which is not chosen by classification of the coarse codewords by the fine codebook.
The latter approach is applied in our simulations.

SIMULATION EXPERIMENTS

A computer simulation has been developed to evaluate the performance of the proposed quarntization
method. This section deals with the preparation, implementation and assessment of the experiments.

Data preparation and training

The procedure used for extraction of the LSFs from the training and test databases is the same as the
one described in the FS1016 standard. The LSFs are computed from the tenth order LP coefficients.
Training of the codebooks has been done on a speech database of 10240 frames (almost 5 minutes
of speech signals) spoken by different male and female speakers. Two thirds of this database is
taken from the TIMIT database and the rest from the other speech samples. The test database
includes 25 utterances (69 seconds of speech) with the same ratio of TIMIT/non-TIMIT data as the
iraining database. Neither the speakers nor the sentences are common to the two databases.

The necessary codebooks and look-up tables have been prepared for the fine-coarse split vector
quantization of the LSFs as explained previously. Both training and optimization stages have been
used for this purpose. Also, the coarse codebooks which are derived in the training stage (before
optimization for FCSVQ) are used for an unstructured vector quantization. Moreover, for the same
subvector partitions and codebook size a uniform binary tree-searched vecior quantization codebook
is trained for each subvector. Hereatfter, this method, which is well known for its goed performance
and affordable costs, will be called tree-searched split vector quantization (TSSVQ).

Simulation

The standard CELP algorithm was implemented with different LSF quantization schemes, including
FS1016 scafar quantization, unstructured full search vector quantization, tree-searched split vector
quantization and no quantization, as well as the proposed method. The results of these experiments
have been evaluated by different objective measures.

Furthermore, the computational complexity and memory requirements of the different vector

quantization methods have been calculated. In this computation one instruction represents muttiply-
add, comparison or data format conversion. In the storage cost estimation, floating point precision is
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considered for scalar quantization levels, while the format of coarse codeword elements is assumed to
be double precision. Finally, single precision format is ailocated fo the ceils of look-up fables. Table 1
shows a comparison between the storage cost and computational complexity of the proposed method,
TSSVO and unstructured vector quantization.

ooVl anc U ugured vector gudl

Quantization Method Storage Cost [kbyts] Computation Cost
[No. of Instr ]
Unstructured VQ 5.00 7,680
TSSVQ 8.98 480
FCSVQ 1344 48

Table 1. Cost comparison

Distortion measures

Three objective distortion measures are considered for evaluation of the results. The first measure is
spectral distortion (SD), which is a popular measure in the spectral coding field and is defined as
1

1 &1 ~ 2l
SD=-—5Y |~1({10log S (0)—10log S, (® dB] ,

N;ﬂ{( g5, (@)-10logS, @)) [dB]
where S,(@) and .i(u)) denote the original and quantized LPC spectra for the +th frame of speech
and Nis the total number of frames in the simulation.

In this study, we propose another distortion measure which is called Synthesized Spectral Distortion
(SSD) as a second objective measure. This distortion measure is similar to the conventional spectral
distortion, but it calculates the spectral distortion between the LPC spectra of the original signal and
the one extracted from the synihesized speech. The use of the synthesized spectral distortion is
motivated by several facts. In conventional SD it is considered that the residue resulting from passing
the speech signal through the inverse filter of vocal-tract (LP filter) is later passed through the
quantized version of vocal tract filter. Also, the same implementation is used for any subjective test.

There are several oversimpliications in this modelling in the use of SD. All the standard speech
coders based on linear prediction calculate the target excitation by passing speech through the
quantized inverse filter and not the unquantized one. Secondly, almost any frame oriented speech
coder based on finear prediction uses an interpolation scheme between the quantized LP filters of the
adjacent frames, and again this is discarded in the modeling. Finally, the model implicitly assumes
that either the excitation is exactly reconstructed by the excitation codebooks or that the error has a
totally white spectrum, neither of which is true, particuiarly for low rate speech coders.

The synthesized spectral distortion has none of these defects, simply because it is an assessment on
the results of a real speech coder with no modelling simpiification. Moreover, the SSD is not only
affected by the static performance of the quantized spectrum, but it also reflects the dynamic behavior
of the quantization (inter-frame effecis). Of course, one should remermber that the SSD is affected by
both the spectral coding distortion and the distoriion resulting from other parts of the coding process
(e.g. excitation quantization). Nevertheless, as long as different spectral coding methods are
evaluated on a single speech coder with different spectral coding schemes, such as the simulations in
this paper, the results of SSD more truly refiect the performance of spectium guantization than SD.

As a final comment about SSD, it noteworthy that possibly this measure should have a strong
correlation with a true subjective test, as long as the shori-term spectral envelope estimated by the
linear prediction model is considered to be a proper model for formant analysis in the human auditory
system. The reason is that the SSD is calculated from the short-term spectral envelopes of the
original and synthesized speech.

The third objective measure is segmental signal to noise ratio, which evaluates the errors of the
synthesized speech produced by decoder.
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Resuits and discussion

As the Table 1 indicates, the complexity of FCSVQ is less than 1% of that of unstruciured VQ, and
only to 10% of TSSVQ. The memory requirement of FCSVQ is almost 30% more than TSSVQ and
2.6 times that of unstructured VQ. Table 2 depicts the resulis of different distortion measures for the
simulation of the test speech database. The resulis show that the performance of FCSVQ is superior
to that of TSSVQ.

Quantization Method No. of Bits SD[dB] | Percent. of Frame | Percent. of Frame SSD [dB] Seg SNR[dB]
per Frame with SD>2 dB with SD>4 dB
Unquantized - -— - - 2.12 9.17
FS1016 Std. 34 149 106 0.4 231 8.73
Unstructured VQ 24 146 129 0.0 235 893
TSSVQ 24 1.65 215 03 243 882
FCSVQ 24 181 18.2 0.2 241 8.84

Table 2. Results of simulation experiments
CONCLUSION

The fine-coarse split vector quantization method is proposed for spectral coding in low rate speech
coders.  This method has been cuilined and the related training and optimization issues are
addressed. Also a new spectral distortion measure has been suggested. Experimental simulation
verifies that the proposed method is superior to the tree-searched vector quantization scheme, with
both better performance and lower computational complexity.
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