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ABSTRACT—This paper describes the concept of eigendecomposition for multi-channel signal
separation, an alternative method of enhancing the desired signal corrupted by interfer-
ence. The method uses two observations, which come from a pair of single sensors (or
beamformers) both of which contain the desired signal and the undesired signal(s). The
method assumes that the desired signal and the undesired signal(s) are uncorrelated and
the signal-noise ratios (the ratio of the desired signal to the undesired signal(s)) of each
observation are different. The technique has been successfully used to separate speech
signal corrupted heavily by ambient noise, co-talker interference and other sources such as
background music.

I. INTRODUCTION

Speech signal separation using a multiple microphone system has become an active research
area for audio signal enhancement. For example, in a real life acoustic environment, the observa-
tions from multiple microphones contain the desired speech with some interfering audio signals
which could come from television, radio, automobiles, competing speakers or other background
noise sources. The aim is to retrieve the desired speech from the noisy observations. These
problems occur, for example, in hands-free mobile phones, teleconferencing and forensic covert
recording. Similar problems also occur in multi-sensor probing systems for underwater acoustics,
diagnostic and geological survey.

In this paper we consider specifically the case of two-channel observations y;(t), y2(£) which
are observed from a pair of sensors. To simplify the analysis the undesired signal is assumed to
have only one source. The acoustic model is shown as Fig.1, where hy; represents the impulse
response from the desired signal source s4(t) to the output yi(t), hzs represents the impulse
response from the undesired signal source s,(t) to the output ya(t), and hiy and hey represent
the coupling effects between the channels. It is reasonable to assume that the acoustic system
is a 2 x 2 linear time invariant (LTI) system. In the frequency domain we have

Yi(w) | _ | Hu Hp Sa(w) )
Ya(w) Hy Hxp Sy(w)
where Hyy, Hig, Hay and Hyo are the corresponding transfer functions.

The most widely used method of enhancing, or separating the desired signal from the two-
channe] observations was suggested by B. Widrow et al. [1]. Fig.2 shows his adaptive noise
cancelling concept. A desired signal sy is transmitted over a channel hj; to a sensor that also
receives an undesired signal syip uncorrelated with sq;;. The combination of the received de-
sired signal and the undesired signal y; (where y1 = sq11 + su12) forms the primary input to the
canceller. A second sensor receives an undesired signal or reference signal yo (where y2 = 5,90
from source s, transmitted over channel hos) only, so the reference input is uncorrelated with the
desired signal (ho; = 0). The reference input ys is filtered (the adaptive filter is controlled by the
error signal e) to produce an output y that is as close a replica as possible of s,12. This output
is subtracted from the primary input y; to produce the system output z = sg11 + sq12 — y. This
method will be referred to as the least squares (LS) method. Recursive and sequential/adaptive
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schemes based on the least mean squares (LMS) and the recursive least squares (RLS) algo-
rithms have been proposed in [1] and in, e.g., [2], respectively.

The least squares method has been applied in a wide variety of contexts. However, a critical
assumption in this approach is that there is no leakage of the desired signal s4 into the reference
sensor (i,e. ha; = 0). If both the desired signal sy and the undesired signal s, are coupled into
each sensor, then with the least squares method, the desired signal will be partially cancelled
together with the undesired signal. Note that for the method to be succesful, the noise compo-
nent in the corrupted signal y; must be correlated with the component yo. In many practical
situations, this condition can be satisfied only by keeping the two sensors close together. For
example, in hands free telephone applications using two microphones, the two microphones have
to be kept around 5 cm apart to make the noise components in y) correlated to the components
in y2 [3]. This makes it almost impossible to prevent speech signal sy from being included in
the reference yp. The least squares method fails to provide good performance in this case.

An approach to the two-channel signal separation problem, when both the desired signal
and the undesired signal are coupled into each sensor, is presented in [4]. In that approach
it is assumed that sg is a Gaussian autoregressive (AR) process, and s, is uncorrelated white
Gaussian noise. The problem is formulated as a maximum likelihood (ML) estimation problem,
and the iterative estimate-maximize (EM) algorithm is used for its solution.

Another approach to the signal separation problem is presented in [5]. This approach con-
sists of reconstructing the input signals by assuming that they are statistically uncorrelated
and imposing this constraint on the signal estimates. In order to restrict the set of solutions,
additional information on the true signal generation and/or on the form of the coupling systems
is incorporated.

Methods based on eigendecomposition have also been considered. In [6], the author wishes
to establish independence of outputs and thus the zeroness of the off-diagonal elements of the
covariance matrix. The eigen analysis technique is used to produce the intermediate variables
y1(t) and y5(¢). The next step is to find the rotation that provides the correct independence.
This method is called “blind separation” and examples can be found in [7] and [8].

There are limitations when applying the methods proposed in [4], [5] and [6] to real acoustic
scenarios because some critical assumptions made therein cannot be satisfied in many real sit-
uations. The major reason for the limitations is that the acoustic paths (including the acoustic
fields and the recording systems) change the inherent relationships of the original speech signal.
In other words, the real coupling functions are much more sophisticated than, for example, that
assumed in [5] and {6}, where some of the the coupling functions are constants and others are
FIR filters with known order. In this paper, we present a new technique for noise cancellation
based on eigendecomposition. The method has been successfully applied to separate speech
signal corrupted heavily by ambient noise and co-talker inference and other noise sources such

as background music.
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Fig.1 Model of two-channel observations Fig.2, The Least Squares Method.
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II. SIGNAL SEPARATION BY EIGENDECOMPOSITION

For simplicity, let us begin by considering two random sequences each consisting of complex

exponentials. Let
si(n) = Aiui(n) for =1, 2

where ]
ui(n) = ¥ (3)
and the complex amplitudes
A =| A | €% for i=1,2; (4)
For the acoustic modelling shown in Fig.1, we have

Yy1=51®h11 +52®h12 (5)

and y2 = 51 ® ho1 + 52 ® hao (6)

where the ‘®’ indicates linear convolution.

To simplify the analysis we first consider the case in which hyy, k12, hoy and hog can be
expressed as .
hij =| hij | €% for 4, =1,2; (7)
where 0;; as well as ¢; are random variables with uniform distribution. Although this case
is somewhat restrictive, it will show some important and interesting characterastics of signal
subspace. The more general case will be considered in the sequel. Now, the observations y; can

be expressed as

yi(n) = Briui(n) + Byyua(n) (8)
and
y2(n) = Baiui(n) + Bagua(n) 9
where _
Bij = Aihij =| Ai || hij | ¥ for i j=1,2 (10)

The correlation matrixes of the observed sequences are [9, 10]

Ry, = B{Y,)Y;T} = PahUi" + PolUsT  for i=1,% (11)
where Y; and Uj; are the data matrices which consist of N consecutive samples of the observations
yi(n) and u;(n) respectively,

d ..
P Y EByBLY = B{ By P} for ij=1,% (12)

and ‘E{-}’ stands for expectation, ‘*’ denotes the complex conjugate, and “T’ denotes the
conjugate transpose, uj(n) and uz(n) have been assumed to be independent. Then, a new
matrix Rpatio can be built from Ry, and Ry,

Ryatio = Ry Ry, = (PulhULT + PlaUsT) " (PuUiUST + PolnUsT) (13)

The matrix Rratio is called a ratio matrix of the two observed sequences. Ry, is invertible as it
is a positive definite matrix.

Now consider the eigenvectors of matrices Ry,, Ry, and Rogyo . If u1(n) and ug(n) are
statistically independent (as they are when wy # ws) and zero-mean, we have

E{si(t)s3(t+7)} =0 vr
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or

E{u1($)us(t+ 1)} =0 vr (14)
as well as
(t—i—‘r)}u]» T+)}=0 Y1,v, for i#7] {(15)

where t = Tyn. When we perform an eigendecomposition of the matrixes Ry;, Ry,, it is possible
to find the eigenvalues
A Az Aim

and the corresponding eigenvectors
vir vig ccc Uiy for i=1,2

For each Ry, and Ry, there are two eigenvectors (although they are not normalized) which are
the signal vectors u; and ug, where

. , T
up = [1 R EJ(M_nwk] for k=1,2; (16)

It can be shown that u; and ug are also eigenvectors of Ryqtio- For example, to show that uy is
an eigenvector of Reatio, we right-multiply (13) by u;.

Rratioti1 = Ry Ryyuy = (PuUhU;T + PaUsUsT) " (PorUsUTT + PaoalUaUs T )us

= (Pa1/Pi1)ui = Aratio U1 (17)

where the third step follows from (14) or (15) and is based on (18), a formula for inverting
matrices.

(A-ccT)y =4t —alc(I-CcT A l0) e AT (18)
In the same way, we can show that
Rratiot2 = Aratiog U2 (19)
where Avatio, = (P22/P12). From (17) and (19) we deduce that

e the signal subspace spanned by the eigenvectors of R 4, is coincident with that spanned
by the eigenvectors of Ry, and Ry,;

e the eigenvalues of Ryqtio are the ratios of the corresponding power densities (i.e., variances

of the complex amplitudes) for each signal component of the two observations.

The above results can be used to separate the components s1(¢) and sa(t) if the signal-to-noise
ratios (one of s; and sy is assigned as signal and the other as noise) in the two observations are
different or Py;/ Py is different from P/ Pi2. The signal separation can be achieved by building
an eigen filter based on the eigenvectors of the matrix Rygtio-

II1. APPLICATION TO SPEECH SIGNAL SEPARATION

The eigendecomposition analysis discussed in section II which is based on the matrix ratio
R;/IIRYZ of the autocorrelation matrices Ry, and Ry, at the two microphone inputs can be uti-
lized to remove co-talker interference. Assume that frames of speech of the two talkers can be
modelled as a linear combination of random exponential signals. This assumption can be justi-
fied for voiced segments. However, it is well known that unvoiced speech cannot be modeled as a
linear combination of a set of random complex exponential signals. If we assume that unvoiced
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segments can be modeled as band limited random white signals then the proposed analysis can
be extended to the unvoiced signals as well.

Based on the eigendecomposition described above, an algorithm has been developed to sep-
called the

vvvvvvvvvvv

arate multichannel signals with a pair of observation sequences. This algori
MRSS-I algorithm (MRSS stands for Matrix Ratio SubSpace) is as follows:
1. Segment the observation sequences and construct a pair of data matrices for each segment
respectively.

2. Construct correlation matrices:

Ry, = viYT for i=1, 2 (20)
3. Build a ratio matrix using
Rratio = Ry Ry, (21)
4. Compute the eigenvectors and eigenvalues by the decomposition of Ryup. It is possible

to rearrange the eigenvalues as (22).

A€ A S S S 1 S S S S A <o <N, (22)

desired signal subspace noise subspace undesired signal subspace

5. Find the zeros for each eigenvector corresponding to A1, Ag, -, Apy> and the common
zeros for all of them. If a set O; represents the zeros for the ith eigenvector, this step is to
find

O0=0:N02N:--N0y, (23)

6. Build a filter to compress the frequency components around the zeros of the set O.

An illustration of performance for speech signal separation is demonstrated as follows: s; (t)
considered as the desired signal and s(t) as the undesired signal, are shown in Fig.3. After the
coupling system, the average SNR (the ratio of average power of the desired signal to average
power of the undesired signal) of the observation y;(t) is -0.57dB, and the average SNR of the
another observation yz(2) is -6.59dB. The output of our multichannel signal separation system
is z(t) and the SNR of z(t) is approximately 10.44 dB. y1(¢) and z(¢) are shown in Fig.4.

x 10t 1, the dasied signat x10° ¥1, 009 of tha Inpyts, SNA = 0.57¢d

) ——— - SO L, L
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()
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Fig.3. The original speech signal sequences. Fig.4: (a) y1(¢), one of the two observation sequences
which are the inputs of the signal separation system;
(b) #(¢), the output of the system.
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IV. CONCLUSIONS

We have described a novel method of multichannel signal separation based on eigenanalysis.
The method assumes that two observations, both of which contain the desired and undesired
signals, are available. This method can be applied directly to the two-sensor signal acquisition
system. Multiple sensor systems can be converted to two observations by forming two beams
and processing the outputs of the beamformers. The analysis is based on the eigendecomposi-
tion of a matrix Ryario derived from the correlation matrices of the signals at the two sensors or
beamformers. It has been shown that the ratio matrix has a set of eigenvalues which correspond
to the power spectral density ratio of the corresponding frequency components in the observa-
tions y1(t) and y2(¢). By choosing the proper eigenvalue(s) and the corresponding eigenvectors,
the desired signal subspace can be separated from the undesired signal subspace as well as the
noise subspace. The MRSS algorithms perform satisfactorily even if the desired signal is much
weaker in both observations. By using two microphones and employing the proposed technique
it is possible to significantly improve the SNR and the corresponding intelligibility.
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