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ABSTRACT - This paper reporis on & method for improving a speech parameterisation for
speech recognition by increasing the bandwidth of a mother wavelet without significantly
altering its time resolution. The tinear combination of wavelets that have cenire frequen-
cies near each other produce a compound wavelet with a larger bandwidth. This paper
also shows how more complex wavelsts can be constructed for use in other correlation
tasks.

This work applies a wavelet parameterisation using compounded wavelets to a discrimina-
tive recognition task. The wavelet ransform of the speech sample using the resuliant
wavelets is applied to a HMM classifier. Recognition performancs on the E-set discrimina-
tion task improves from 67.5% t0 70.0% through the use of compounding.

INTRODUCTION

Wavelets have been shown to be useful front end processors for spsech recognition systems for
discriminative tasks. Thess speech recognition systems have been based on Hidden Markov Models
(HMMs) (Favero and King, 1994) and neural networks (Favero and Gurgen, 1994; Kadambe and
Srinivasan, 1994; Szu et. al. 1992). Discriminative tasks have been chosen to test with wavelet parame-
terisations to show that improved time and frequency resolution will better parameterise these difficult
areas of speech for spesch recognisers.

Spesch recognition performance has been shown to be sensitive to the choice of mother wavelet and
the number of wavelets that cover the frequency domain (Favero, 1994). if there are insufficient wave-
lets generated in the set, then there will be regions of the spectrum which are not well parameterised. An
excessive number of wavelets produces wavelet coeflicients with a high comelations that do not assist
the parameterisation. In the time domain, the mother wavelst determines how offen the wavelet trans-
form must be sampled. Mother wavelets that have a wide fime duration require slower sample rates of
the wavelet transform than short duration mother wavelets. Thus the time duration-bandwidth product
(ofien referred to the fime-bandwidth product} determines the numbsr of wavelet coefiicients per second
that are required to adequately parameterise a spesch sample (Daubechies, 1992).

Underlying speech analysis, as applied to speech recognition, is the assumption that an improved
parameterisation will improve recognition performance. This also assumes that a recogniser can exploit
the improved feature set. Improving the parameterisation of an aiready useful feature set wouid validate
the above assumptions.

This paper shows how the method of compounding wavelets can improve fhe parameterisation of
speech for speech recognition. The bandwidth of a mother wavelet used in previous work (Favero and
King, 1993, 1994) is extended without significantly affecting its time duration. These wavelets are
applied to a discriminative speech recognition task and show an improvement in speech recognition per-
formance. The method is extended to show how more complex and non regular wavelets can be con-
structed for different classification tasks.
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WAVELET THEORY

Wavelet theory is based on generating a set of fiters by dilation and fransiation of a generating
wavelet (mother wavelet). The mother wavelet is usually a band-pass filier. All of the generated
wavelets are scaled versions of the “mother wavelet”. Increasing the scale of a wavelet will increase
its time duration, reduce the bandwidth and shift the centre frequency to a lower frequency value.
Decreasing the scale does the opposite.

A set of wavelets is generated from any defined mother wavelet W by:

_1, W ( LIZ )
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The wavelets are coniracied (0<a < 1) or dilated (a > 1) and are moved over the signal to be analysed
by time step b. Contractions and dilations scale the frequency response of the generating wavelst to
produce a set of wavelets that span the desired frequency range. The generated set of wavelets can
be considered as a filter bank for speech analysis,

‘pa,b(t) =

The continuous wavelet transform (CWT) performs the inner product (correlation) of a signal sft) with
ali scales and dilations of a mother wavelet. The CWT will produce a two dimensional output similar
0 a spectrogram. The CWT is defined as (a> 0, bis real):

CWT (b, a) = %J's(l)‘?(f%’)dt

The discrete wavelet transform (DWT) is the CWT sampled at a defined set of points. The DWT of a
sampled signal s(k) is given by i, k are indexing integers):

i i 1 k
DWT(d' a'n) = =T ¥ (< - k
(d', a'n) JE; (a' n) s (k)

The scaling value is made discrete by J being discrete. The DWT computes data points an octave
space apart on a dyadic grid if a = 2 since the scale valuss would be ....-2, -1,0,1, 2, 4,8.... (Adyadic
grid has half of the number of data points at each successive lower oclave (Daubschies, 1992; Rioul
and Vetteri, 1991). The value of a can bs chosen such that more than one wavelet coefficient per
octave is generated (voices of an octave). If the initial generating wavelet is defined appropriately

then sub-octave resolution can be accommodated. This can be achieved by choosing:
1
a = 2(number0fVoices)

The sampled CWT (SCWT) is a variation of the DWT. This produces frame synchronous data
(redundant at lower frequencies) but retains the features that are offered by the wavelet transform.
The sampled CWT is given by:
k-n
a

SCWT(d'n) = %;‘I’(——i—)s(k)
a

The wavelet used is a modulated Hanning window. The highest frequency wavelet is 4ms wide (32
samples). The SCWT is used to perform the wavelet transform. The SCWT is modified to reduce the
computational load. Coefficients off the dyadic grid are filled with adjacent coefficients that fie on the
dyadic grid. A piece-wise mel scale is used to locate the wavelets in the frequency domain. There are
12 waveleis above 1000Hz and 6 wavelet below 1000Hz. The wavelet fransform generates 18 coeffi-
cients per sample every 2ms.
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COMPOUND WAVELETS

A pair of wavelets are compounded using the following equation:

Wa, b, i (1) -a;\v(';f—’\ p—t
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where nis the number of voices per octave, and « and B are weighting coefficients for each wavelet.
The equation uses n wavelsts to produce n/2 compounded wavelets. This can be extended to com-
poungd any number of wavelets.

The frequency responss of the compound wavelet is the sum of the two contributing wavelets. The
time duration of the wavelet is the longer of the two confributing wavelets. The weigitting coefficients
can be used to tune the contribution in both the time and frequency domain to achieve a particular
response.

Compound wavelets obey the reconsiruction admissibility condition {(Daubschies, 1892) since the
sum of the compound wavelet coefficients will be zero i the sum of the contributing wavelets is zero.
While this is a desirable property for wavelet analysis, it is not consequential for spsech analysis as
applied fo speech recognition.

When more than two wavelets are compounded edge effects must be considered. The wavelets that
are located on the edge of the compounded band should be weighted so that the freguency response
of the compound wavelet is consistent across the compounded bandwidth. »
Compound wavelets are computationally efficient. Compounding is performed oncs during the initial-
isation of the wavelet transform. The contributing wavelets are computed and then compounding per-
formed. The inner products ars then calculated between each of the compound wavelets and the
signal of interest.

Increasing the bandwidth of a wavelet.

When both a regular time and frequency domain representation are reguired, wavelets that are o be
compounded should be sufficiently close to avoid ripples in the pass-band. This is the case in spesech
analysis where the formants are visualised assuming thet each block on the time-frequency plotis a
regular shape. This and the consistency with the specirogram makes for easy interpretation of the
wavelet transform (scalo-gram) (Grossman et al., 1980).
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Figure 1:Compounding wavelets to increase bandwidth. (8) Four adjacent wavelets used
for compounding. (b) Resulting compounded wavelets

Consider Figure 1(a). An additional wavelet is inserted between adjacent wavelets (the wavelets on
the right of a pair. The wavelet pairs are then compounded. Figurs 1(b) shows the ouicome of the
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compounding using adjacent pairs. The compounded wavelet has an increased bandwidth and a
slightly improved cut-off frequency.

The phase relationships between the two wavelets need fo be considered for a particular task. This
can be critical for analysis that relies on the phase properties of the signal. Since these compound
wavelets are heing used for recognition of rather long acoustic events (> 1ms) the phase relation-
ships are not consequential. :

Special Signal Correlators

Arbitrarily complex compound wavelets can be created for particular tasks. The weights a and B can
be used to provide arbitrary linear combinations of wavelets to achieve a desired analysis. The result-
ant wavelet continues to satisfy the admissibility condition with the use of these weighting values.

Consider Figure 2. Suppose we wish fo use a wavelet to identify third-octave chords within musical
signals. Compounding two wavelets that are one third apart can be used as the mother wavelet io be
scaled over the entire frequency range. Figure 2 shows how the wavelels are compounded. This new
wavelet can now be scaled and translated over the musical range of interest using 12 voices per
octavs to locate third-ociave chords.
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Figure 2:How two wavelets separated by an third-octave can be compounded o create a
wavelet for third-octave signal detection

Extending the compound level

The compound level can be extended to increase the bandwidth further and improve the frequency
response of the compounded wavelet. Figure 3 shows how successive compounds removes rinples
from the pass band of a wavelet that has a narrow bandwidth. With successive compounds the pass-
band becomes smoother.

EXPERIMENT

A discrimination task is chosen for the experiment based on the NIST Ti-46 word database. This
database contains 16 speakers and each speaker repeats each word 26 times. Ten of the words are
used for training and the 16 remaining are used for testing. The database is down-sampled to 8kHz.
The leading and trailing silence is removed from each utterance prior to performing the wavelst trans-
form. The speech is parameterised with wavelets with compound levels from 2 to 10.

We have chosen the “E-set” (b, ¢, d, e, g, p, 1, v, 2) because the difficulty in discriminating the initial
consonant makes this a difficult muiti-speaker recognition task.

The experiments described here use continuous density HMMs with 5 states and 5 weighted mix-
tures (Rabiner, 1989).
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Figure 3:Increasing the compound level reducss the ripple in the passband.(a) 16ms han-
ning wavelet with compound level 3. (b) 16ms hanning wavelet with compound level 4
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Figure 4:Recognition resulis for different compound levels

DISCUSSION

The graph in Figure 4 shows that the speech recognition performance increases with increasing
compound level. The recognition performance does not improve indefinitely but approaches an
upper limit for this particular task and initial wavelet set. The greatest increase in recognition perform-
ance occurs in at compound level 2 from which there is fittle significant gain. There is a small local
minimum at compound level 4. The movement is less than 0.5% of the recognition performance and
is not statistically significant.

Intuitively, the compounding of the wavelets is, for a fixed number of wavelets, improving the band-
width of the wavelet so as to improve the coverage of the frequency range. As the frequency range
is covered sufficiently, the parameterisation of the speech improves for the given number of wavelets,
and hence the recognition performance improves. Given that there is a timit to the amount of infor-
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mation that a fixed number of coefficient can contain, the recognition performance also finds this limit.

CONCLUSION

The recognition results show that by improving the speech parameterisation by improving the fre-
quency domain coverage, speech recognition psrformance can be improved.

The method of compounding wavelets presented in this paper provides facilities to create wavelets
through the linear combination of simpls modulated wavelets and how wavelets with arbitrary fre-
quency responses can be constructed.
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