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ABSTRACT - Distances derived from the all-pole, Linear-Prediction (LP) cepstrum are known
for their ability to capture important spectral differences between speech sounds with rela-
tively small computational complexity, and hence are widely used for computer speech and
speaker recognition. However, these so-called cepstra! distances have todate been formu-
lated in such a way as to yield similarity measures, which are integrated over the entire
spectral range defined betwsen zero Heriz and half the sampling frequency. Whils this
time-honoured formulation can be very effective, it is limited by the fact that arbitrary fre-
quency bands within the available speciral range cannot be isolated or emphasised in the
distance computation itself. In this paper we show that the existing mathematical framework
for deriving LP-cepstrum distances is amenable to one which permits direct frequency-band
specification. In particular, the quefrency-weighted cepstral distance, also known as a spec-
tral slope distance, is re-formulated as a parametric function of frequency, and then illustrated
using directly selected frequency bands of a pair of speech spectra.

INTRODUCTION

A relevant issue in the search for robust methods of computer spaech and speaker recognition is
the choice of a suitable distance measure. Much progress in this area has been prompted by the
development of the all-pole, Linear Prediction (LP) model of speech (Atal and Schroeder, 1967, Markel
and Gray, 1976), which has led io distance formulations more closely related to the spectral properties
of speach sounds.

The unweighted Euclidean distance based on the low-order LP-cepstrum, for example, is particularly
well-known for its computational simplicity, and for its strong correlation with the log spectral distance
used as a benchmark by Gray and Markel (1976). However, this cepstral distance naturally tends to
weight differences equally across the frequency spectrum, and thus is expected o be sensitive not only
to peak frequency but also to peak amplitude and speciral tilt to some degree. This lack of localised
sensitivity is generally regarded as an impediment to robust speech recognition, and consequently
more specialised forms of cepstral distances have been developed.

The proposal of a cepstral distance sensitive mainly to differences around spectral peaks, appears to
have first emerged from Yegnanarayana and Reddy's (1979) study of the consequences of the peak-
sensitivity property of the first derivaiive of the LP-phase spectrum. Yegnanarayana and Reddy showed
this property to be indeed embodied in the index-weighted or quefrency-weighted cepstral (QCEP)
distance, which they derived from the squared Euclidean distance between the first derivatives or
equivalently between the respective local slopes of two LP-phase spectra. Only a few years later, some
strong evidence supporting the likely importance of spectral slope in computer speech recognition,
arose from Klatt's (1982) finding that only deviations in spectral peak frequency contribute significantly
to human perception of phonetic change in vowels and fricatives.

Since then, a series of studies (e.g., Hanson and Wakita, 1986; Juang et al., 1986; Tohkura, 1986;
ltakura and Umezaki, 1987) have sought to enhance the performance of cepstral distances, by de-
signing weighting windows (referred to as lifters) aimed at reducing the effects of certain LP-cepstrum
coefficients. The results therein reported indicate that speech or speaker recognition accuracy can be
improved by applying cepstral lifters: (1) which give more weight to spectral slope differences; and
(2) which help to control “non information-bearing cepstral variabilities” (Rabiner and Juang, 1993:
p. 168) caused by analysis window positions, transmission line characteristics, or by certain inter-
speaker differences. Although the liftering approach represents a significant step towards obtaining
robust cepstral distance measures, it does not offer direct control of arbitrary frequency bands within
the available spectral range.
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In this paper, we endeavour therefore to show that LP-cepstrum distances, defined traditionally over
the entire available spectral range, can be directly computed within any desirable frequency band. in
particular, the quefrency-weighted cepstral distance is re-defined as a parametric function of frequency,
and then illustrated within selected frequency bands of a pair of speech specira.

MATHEMATICAL DERIVATION OF THE QUEFRENCY-WEIGHTED CEPSTRAL DISTANCE
Closed-form representation: [D, (0, #)]

The well-known method of linear prediction of speech samples yields an equivaient linear model for
speech production, which can be represented by an all-pole filter of transfer function H{z) defined as

follows: -

A= 45" 73 Tt 0
where ¢ is a gain factor, a,, are the linear-prediction or autoregressive coefficients of the inverse filter
polynomial A(z), and M is the polynomial order. By evaluating A(z) on the unit circle (i.e., at z = &%),
the inverse filter's frequency response A(e’) can be decomposed into its magnitude | A(e/?) | and
phase —#(e’?) components. The following equation describes these componenis with the normalised
frequency 0 = = at half the sampling frequency f,:
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Assuming a stable all-pole filter with its roots lying inside the unit circle, the logarithm of A(e?) can
further be expanded as a Taylor series of the so-called LP-cepstrum coefficients C;:
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Of special interest in this study is the Negative Derivative of the linear-prediction Phase Spectrum
(NDPS), which can easily be related to the LP-cepstrum by equating the imaginary parts of Equations 2
and 3, and then taking the negative of the first derivative with respect to the normalised frequency 6,
the result of which is as follows:

ﬁ'.lﬂff_) = E ECy cos(kf). @

It is the squared Euclidean distance between an NDPS pair that Yegnanarayana and Reddy (1979)
used as a basis for deriving the quefrency-weighted cepstral distance. The mathematical steps fol-
lowed by these authors are presented below:
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where ¢le’®) and ¢'(e’®) are the LP-phase spectra of two speech frames to be compared with each
other, C; and C;, are the LP-cepstrum coefficients for the two frames, and k represents the quefrency of
each coefficient. Equation 6 then describes the so-called quefrency-weighted cepstral distance which
is readily obtained by: (1) substituting for Equation 4 into Equation 5; and (2) then usihg Parseval’s
identity which in this case eliminates the need to carry out the integration in Equation 5. Note that, in
practice, the summation in Equation 6 is fruncated to a small number of terms, which is usually set
equal to or moderately greater than the order of the LP-filter (Gray and Markel, 1976; Yegnanarayana
and Reddy, 1979), in order o retain in the distance measure essential features of the pair of resulting
cepstrally-smoothed spectra.
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Parametric representation: [Ds(8;, 62)]

An important property embodied in Equation 6 is the closed-form representation of [, (0, =)° in the
spectral domain. That is, the distance (D1)2 between a pair of speech frames will yield a measure of
spectral similarity, which is integrated over the entire spectral range defined between zero Hertz and
haif the sampling frequency of the corresponding speech signals. Although it is possible to reduce
the contribution of certain frequency bands within that range by using appropriate cepstral lifters or a
non-linear scaling of the spectrum (e.g., the mel scale), these approaches do not afford the flexibility
of directly selecting a particular band in the distance computation. In order to achieve this flexibility,
we re-consider Equation 5 with a view to deriving a parametric form of the QCEP distance, which
depends on the lower and upper limits [4,, 8] of the selected frequency band.

Assuming cepstral series truncated to M terms, and assuming 6, and ¢, to be the normalised limits of
any frequency band of interest within the range [0, =] , the substitution for Equation 4 into Equation 5
vields the following expressions:
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Parsaval’s theorem cannot be applied in this case, and thus the squared summation in Equation 7 is
first decomposed and then integrated, according to the following equation:

(Do) = g0, 02) + B0y, 00, ®
where:
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The additive components A(9,,8;) and B(9,,8,) of the QCEP distance (D.)* re-formulated in Equa-
tion 8, are themselves obtained by carrying out the integrations specified in Equations 9 and 10, the
results of which are summarised below:

M
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where:
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Equations 8, and 11 through 14 describe a new, parametric formulation [D,(6;,6,)]* of the QCEP
distance, which not only embodies the spectral-slope sensitivity of the NDPS, but which can now be
computed over any frequency band [¢,, 8.] of interest within the available spectral range [0, 7].
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Matrix formulation of [D, (9, , 8,)]?
For the sake of economy in formulaic description and efficiency in computer implementation, a matrix
notation is sought for the parametric QCEP distance [D2{6:,6,) derived earlier. Using Equations 11
and 13, Equation 8 can be re-written as follows:

; M M-l M
[D2(8:,8:F = A P ARTEDD Y 660 fue| (15)
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where:
& = [KCe - C})), b = [tlCe - CY)] .

Next, the first and second terms highlighted on the right-hand side of Equation 15 are, respectively,
expressed in matrix form as [d7 Ad] and [d” Bd], where Ais a diagonal matrix, B is a strictly triangular
matrix, d is a column vector and ¢7 is the transpose of ¢, as shown below:
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Using A, B, d and d” defined above, Equation 15 can finally be expressed using the following matrix
notation:
i
2 . ' TIar

D201, 0F = s [d7 W] (16)
where W = [A + B] is a triangular matrix the elements of which (ex and By,) are independent of the
cepstral coefficients, but are dependent on the frequency-band parameters ¢, and 8, as shown in
Equations 12 and 14.

ILLUSTRATION OF [D5(8,,6,)]*: SPECTRAL SLOPE and FREQUENCY-BAND SELECTION

We now offer an illustration of the parametric QCEP distance formulated above, as it operates on
directly selected frequency bands of a pair of speech spectra. For this purpose, two frames 60-msec
distant in time from each other were extracted from the diphthong nucleus of the monosyllabic word
“hoy” spoken by an adult, male speaker of Australian English.

The log-magnitudes of the LP-spectra of the two frames are superimposed in Figure 1(a), and appear
to be markedly shifted with respact o each other in certain speciral regions. Indeed, the respective
first, second and fourth formants (F1, Fy and F ) differ in amplitude but only slightly in frequency, the
respective third formants (F3) do differ primarily in frequency, while the respective fifth formants (F5) do
differ both in amplitude and frequency. There are also notable differences in the valleys intermediate
between formant peaks. However, by virtue of the peak-enhancement property of the NDPS described
by Fuchi and Ohta (1977) and by Yegnanarayana (1978), it can be observed that only the regions
of maximum slope located in Figure 1(a) near spectral peaks are emphasised in the corresponding
NDPS representations shown in Figure 1{b).

Figures 1(a) and 1(b) illustrate “exact” spectral representations as they are obtained using an FFT of
the LP-autoregressive coefficients. For the sake of completeness, Figure 1(c) shows, for the same
pair of speech frames, the corresponding cepstrally-smoothed NDPS which are implicitly compared in
the cepstral distance computation. These spectra are generated from a cosine expansion of a finite
number (e.g., M = 14) of quefrency-weighted cepstral coefficents (i-e., a practical implementation of the
right-hand side of Equation 4). As a result, the features of the exact NDPS representations become
somewhat biurred in Figure 1(c}, but retained in their essence.

In Figure 1(d), we iliustrate the flexibility of our new parametric formulation and highlight the spectral
slope sensitivity of the QCEP distance {D2(8:,6,)F, as it is applied within 6 consecutive, but indepen-
dent frequency bands of 600-Hz width. The very smail measure obtained within the lowest frequency
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Figure 1: Hlustration of D (6., 8,)F between a pair of frames chosen 60-msec apart from each other in
the diphthong nucleus of the monosyltabic word “hoy” spoken by an adult male, speaker of Australian
English. Analysis conditions: Sampling frequency f, is 10 kHz; LP-order is set to 14; M (number
of LP-cepstrum coefficients) is also set to 14; Hamming window size is 25.6 msecs; frame advance
is 10 msecs; FFT size is 256 points. Graph (a): Superimposed, log-magnitude of LP-spectra of the
two frames. Graph (b): Superimposed, exact NDPS of the two frames. Graph (c). Superimposed,
cepstrally-smoothed NDPS of the two frames. Graph (d). Profile of distance measures computed
within 8 consecutive, but non-contiguous frequency bands. The Hertz values (f) shown for the lower
and upper limits of each band are first converted into radians {9) via§ = f - ?—* and then substituted

into [Da (81, 62)F.
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band (100, 700 Hz) chosen to span the F; peaks, is indicative of insensitivity to changes in formant
amplitude. The second band (900, 1500 Hz) is chosen 10 cover the spectral valley between Fy and Fy.
In spite of the large differences in this spectral region which are clearly evident in the log-magnitude
LP-spectra shown in Figure 1(a), the resuiting distance measure remains relatively small. Similarly,
in the frequency bands [(1600, 2200 Hz), (3300, 3900 Hz)] spanning the Fy and F, peaks respec-
tively, the distance measures obtained are still relatively small, and thus changes in ampiitude are
definitely not very influential. In sharp contrast, the maximum measure obtained in the frequency
band (2400, 3000 Hz) encompassing the F3 peaks, clearly illustrates the higher degree of sensitivity
of the QCEP distance to deviations in formant frequency. A similar observation can be made for the
frequency band inclusive of the fifth formant regions (4000, 4600 Hz).

CONCLUSION

We have derived and illustrated a new formulation of the quefrency-weighted cepstral distance, which
allows direct selection of any frequency band [9., -] within the available spectral range [0, x]. This
flexibility in cepstral distance computation represents a further step towards gaining more control of
spectral information using the low-order LP-capstrum. As a result, we conjecture that the relative
importance of various frequency bands for computer speech and speaker recognition could be more
easily studied.
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