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ABSTRACT - This study develops an unsupetvised algorithm for extracting the perceptual
dimensions of vowel backness (a correlate of F2) and vowel height (a correlate of F1) from the
LPC-cepstral representation of a speaker’s vocalic system.

INTRODUCTION

There is evidence that monophthongal vowels are perceived in terms of muiti-valued or continuous
dimensions which relate to the perceived backness of the vowel, the perceived height of the vowel
and the duration of the vowel. Although the duration of a vowel can be measured in a straightforward
fashion, measurements of the perceived backness and height of a vowel are much more difficult to
obtain. These dimensions can only be accurately measured by petforming a perceptual experiment in
which listeners are required to percepiually discriminate between vowel segments of equal length.
Multi-dimensiona! scaling can then be applied fo the perceptual confusions between vowel pairs made
by listeners in order to construct a perceptual space that reflects the perceptual discriminability of
vowel segments of equal duration. Vowels that are easily discriminated will lie far apart in this space
whereas vowels that are easily confused will lie close together. The first perceptual dimension, along
which vowels show the greatest variance, relates to the perceived backness of a vowel (Pols et al,
1969; Klein et al, 1970). The second dimension, along which vowels display the next most variance, is
orthogonal to the first and relates to the perceived height of a vowel. The third perceptual dimension,
which is orthogonal to the first two, is more difficult to interpret but it seems to provide a degree of
discrimination between rounded and unrounded vowels, at least for the vowel systems of some
languages (Pols et al, 1969; Klein et al, 1970).

Although an aceurate measure of the perceived backness and height of a vowel can only be
obtained empirically, approximate estimates of perceived vowel backness and height can be
obtained using the formants of the vowel. The perceived backness of a vowe! is related to the
frequency difference between the first and second formants of the vowel as measured on the
perceptually relevant bark scale (Ladefoged, 1982; Ladefoged and Maddieson, 1989). An
approximate estimate of the perceived height of a vowel can be obtained from the frequency of the
first formant (Ladefoged, 1982; Ladefoged and Maddieson, 1988). it makes no difference whether
the frequency of the first formant is measured on the Heriz, bark, or mel scales because these scales
are linearly related in the frequency range in which the first vowel formant is found (ie., 200 - 800 Hz).

However, the well-known problems associated with extracting reliable formant estimates make this
method of deriving estimates of vowel backness and height rather unattractive. it would be valuable if
we could develop a robust method for estimating the perceived backness and height of a vowel that
was not empirically based and did not require the estimation of formants.

SUPERVISED EXTRACTION OF PERCEPTUAL DIMENSIONS FROM FILTERBANK SPACE

Klein et al (1970) developed a supervised method for extracting the dimensions of vowel backness
and height from the physical representation of vowel spectra in terms of the log energy levels in a
bank of eighteen 1/3-octave bandpass filters. Their work applied to the steady-state vowel targets of
the 12 Dutch monophthongal vowels as pronounced by 50 male speakers in the context /h-vowel-/.
Their computations were based on one-third ocfave spectra of 100 ms segmenis taken from the vowei
targets. Using the 18 frequency bands, the 12 x 50 vowel sounds created a cloud of 600 points in the
18-dimensional space. Principal Components Analysis (PCA) was used to rotate these eighteen axes
such that the first new dimension explained as much as possible of the original variance, the second
dimension explained as much as possible of the variance left unexplained by the first, and so on. In
this way, a subspace was derived that explained the maximum total variance with a minimum number of
dimensions. The results showed that the first two Principal Components {PCs) explained 61% of the
total variance for the 600 vowel segments and that this percentage increased to 83% for the 12
average vowel points. This result suggests that a two-dimensional subspace (ie, a piane) will give a
reasonably accurate approximation of the spectral difference among average vowel spectra.

Kiein &t al also calculated the perceptual dissimilarities between the same 600 vowel segments used in
the analysis of vowel spectra dissimilarities. The same 50 speakers used in the vowel spectra study
were required to listen to a series of vowel segments of 100 ms duration and to identify which of the 12
Dutch vowels they thought they had heard. Kruskal's multidimensional scaling technique was used o
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construct a spatial representation in which the distance between vowels corresponded to their
perceptual discriminability. The only criterion in this technique is a monotonic relationship between
interpoint distances and their corresponding dissimilarity indices. The extent to which this relation is
violated for a particular number of dimensions is expressed by a “stress” percentage. Kruskal's
technique, applied to the confusion matrix, produced a configuration in one dimension with a stress of
21.2% , a stress of 7.7% in two dimensions, a stress of 4.7% in three dimensions, and a stress of 2.3%
in four dimensions. This suggests that the undetlying perceptual configuration is at least two
dimensional but may well be three or four dimensional. The first of these perceptual dimensions
correlated highly with F2, suggesting that it was a measure of vowel backness. The second of the
dimensions correlated highly with F1, suggesting that it was a measure of vowel height.

Having obtained a configuration of vowel points representing perceived vowel timbre, Klein et al
rotated the four-dimensional principal component reduction of the sound spectrum measured in one-
third octave bands in a trial-by-error fashion until it matched the four-dimensional perceptual
configuration of the 12 vowels. After being rotated to congruence, there was a close correlation
between the first three dimensions of the four-dimensional representation of vowel timbre and the first
three dimensions of the four-dimensional physical representation. This demonstrated that an
appropriate rotation of the four-dimensional physical representation of vowel spectra will
generate an excellent first-order approximation of dissimilarity in the perceived timbre of a vowsl.

We wished to compare the shape of the surfaces formed by the average Dutch vowels in physical
space and in perceptual space. Our interest lay in the shape of the vowel surface in physical space
after it had been rotated to congruence with a four-dimensional percepiual subspace. To visualise
these surfaces, we considered only the first three dimensions of each space. This is acceptable
because the fourth dimension in both the physical and perceptual space was found to contribute litile
to the total variance of the Dutch vowel system (5.8% and 6.2% respectively of the total variance of
the 600 vowel poinis).

The physical subspace was derived from a graphical presentation of this space by Klein et al (1970,
Fig. 4). The four-dimensional subspace was obtained by applying Kruskal's multidimensional scaling
method to the matrix of dissimilarities between vowels pairs reported by Klein et al (1970, Table V).
This was the same approach used by Klein et al (1970) to to derive the four-dimensional perceptual
space that is neither graphed nor tabulated in this work.

We found high correlations between the first and second dimension of the physical representation
and the first and second perceptual dimensions (r = 0.84413 and r=0.93174 respectively). There were
also high correlations between the first and second physical dimensions and the second and first
formants (r=0.96921 and r=0.85414 respectively). This finding suggests that the first and second
dimensions of the three-dimensional physical configuration were providing an approximate measure of
vowel backness and vowel height. The poor correlation between the third dimension of physical and
perceptual space suggests that it is only possible to extract a two-dimensional perceptual
representation from a three-dimensional physical representation.

TABLE 1. Correlation (N=12 average Dutch vowels) between the 3D perceptual space (D1, D2,
D3), 3D physical space (X,Y,Z) and F1 and F2.

PHYSICAL SPACE PERCEFTUAL SPACE
X Y z D1 D2
D1 0.94413 -0.03627 -0.2796 -0.51359 0.89315
D2 -0.20101 0.93174 -0.2272 0.75029 -0.16901
D3 0.23396 0.324 0.2299
F1 -0.53942 0.85414 0.10295
F2 0.96%21 -0.07230 0.03247

UNSUPERVISED EXTRACTION OF PERCEPTUAL DIMENSIONS FROM CEPSTRAL SPACE

The principal components derived from the physical representation of vowel spectra are not laws of
nature. These components will not necessarily: be more theorectically meaningful than any other linear
combination of log energy levels. Consequently, many researchers prefer to use components to
reduce dimensionality by eliminating neglible variation, and then rotate once more in the smaller
dimensional space to achieve some meaningful criterion (cf. Wilkinson, 1989, p77). It is also important
to understand that the signs of loadings within components are arbitrary. Relative signs of loadings are
artifactual and not theoretically significant. We can therefore rotate a factor 180 degrees by changing
negative loadings to positive loadings and positive loadings to negative loadings {cf. Witkinson, 1889).
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Plot of the 12 Dutch vowels, excludingthe  Plot of the 12 Dutch vowels, excluding the
rounded front vowels, in 3D physical space  rounded front vowels, in 3D perceptual space
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Our simplified version of the work by Klein et al (1970} demonstrates the possibility of rotating a three
Principal Component representation of average vowel spectra such that the first two rotated Principal
Components correlate strongly with the perceptual dimensions of vowel backness and vowel height.
This was achieved by Klein et al using a trial-by-error approach to rotate the 4D physical representation
of the12 average Duich vowel spectra to congruence with a 4D perceptual representation. Careful
observation of the structure of the vowel surface in the first three dimesnions of the physical subspace
affer it had been rolated to congruence (see Figure 1) suggests that the required rotation could be
achieved in an unsupervised fashion. When 4D physical space had been rotated to congruence with
4D perceptual space, the Dutch vowel spectra in the first three dimensions of the physical space
formed a surface that is well described by the four-term equation for a parabolic surface with filt,

¥ =2.00X*+0.098X +1.801+1.027Z (Eqn. 1)
where X, Y and Z are the first, second and third rotated principal components. This vowel surface is
graphed in the first three dimensions (X-Y-Z) of the physical space in Figure 1 (and can be compared
with the vowel surface in the first three dimensions of perceptual space (D1-D2-D3) in Figure 2). There
was a correlation of 0.705 between estimates of Y derived using the equation and actual Y
coordinates. The equation therefore represents the shape of the vowel surface reasonably well. This
equation describes a parabolic surface with an axis of symmetry that lies perpendicular to the first
rotated principal component (X). The parabolic surface is tilted such that the projection of vowels onto
the plane formed by the second and third rotated principal components {the Y-Z plane) fie at an angie
of about 45 degrees. In Equation (1) above, this 45 degree orientation of the vowel distribution in the
Y-Z plane is captured by the relationship,

Y=1027Z . . (Egn. 2)
When the vowel surface in the physical representation of vowel spectra lies in this particular
orientation, there is a strong corrslation between the first rotated principal component (X) and
perceived vowel backness(D1) and between the second rotated principal component (Y) and
perceived vowel height (D2). It may be possible to achieve these high correlations in an unsupervised
fashion by rofating the parabolic vowel surface in the 3D physical representation o achieve wo criteria:
e first, to maximise the parabolic shape of the vowel distribution in the Y-X plane, and
o second, to ensure that the vowel distribution in the Y-Z plane is oriented at 45 degrees.

DEVELOPMENT OF AN UNSUPERVISED ALGORITHM IN LPC-CEPSTRAL SPACE

These ideas were used o develop an unsupervised algorithm for extracting these two perceptual
dimensions of vowel backness and vowel height from the LPC-cepstral representation of a speaker’s
vowel systern. These dimensions correlate strongly with F2 and F1 respectively.

It Is certainly possible to apply the supervised extraction technique developed by Klein et al using
the filterbank representation of vowel spectra to the representation of vowel spectra in terms of
cepsiral coefficients. There is a linear relationship between the cepstral representation of a vowel
system and its representation in terms of the log energy levels in a bank of filters. This means that it
should be possible to find dimensions in LPC-cepstral space that correspond to the perceptual
dimensions of vowel backness and vowel height that Klein et al extracted from the filterbank
representation of a vowel system,

However, rather than using the supervised exiraction technique of Klein et al, we developed an
unsupervised technique that does not require a priori knowledge of the perceptual representation
of a vocalic system. To develop this algorithm, we studied the struciure of the vowel distribution in the
first three dimensions of a four-dimension physical representation of the average Dutch vowel spectra
This four-dimensional physical space had been rotated to congruence with the four-dimensional
perceptual representation of the same vowels (see Figure 1). The Dutch vowels formed a parabolic
surface in the subspace formed by the first three principal components of the filterbank
representation. This parabolic surface had an axis of symmetry that lay at right angles to the first
rotated principal component. The axis of symmetry of the surface was tilted at a 45 degree angle to the
second principal component.

We can characterise the orientation of the vowe! surface within this space by projecting vowels onto
the Y-X and Y-Z facets of this space. When vowels were projected onto the Y-X facet formed by the
first and second principal components, they formed a distribution that was shaped like a parabola. This
parabola had an axis of symmetry that lay at right angles to the first principal component. When the
vowels were projected onto the Y-Z facet formed by the second and third principal components, the
vowels formed a wedge-shaped distribution that lay at 45 degrees to the Y axis.

A speaker's vowels form a parabolic surface in the space formed by the log energy levels in a bank of

filters. They must form a surface of the same shape in cepstral’ space because the cepstral and
filterbank representations are finearly related. in another paper , Hawkins et al (1994a) demonstrate
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that a speaker’s vocalic distribution does in fact form a parabolic surface in the subspace formed by the
first three principal components of the cepstral representation of a speaker’s vocalic system.

To transform the first three principal components of LPC Cepstral space into perceptual dimensions,
we must reorient the parabolic vocalic surface. In particular, we must rotate this three-dimensional
subspace until the projection of vowels on the various facets of the space looks the same as it did in
the experiment by Klein et al (1970) when physical space had been rotated to congruence with
perceptual space (see Figure 1). The projection of vowels onto the Y-X facet formed by the first and
second principal components should look like a parabola that has an axis of symmetry lying
perpendicular to the first rotated principal component X. If we call the three principal components X, Y,
and Z, then this vowel distribution is easily achieved by rotating the X-Y plane about the Z axis to
maximise the correlation r
Y'Y =aX? +bX +c) (Ean. 3)

The projection of vowels onto the Y-Z facet formed by the second and third principal components
forms a wedge-shaped distribution that lies at approximately 45 degrees to the Y axis. This orientation
can be achieved by rotating the Y-Z plane anticlockwise 45 degrees. In practice, a further 180 degree
rotation is required to reverse the polarity of the principal component Y to match it to the polarity of the
second dimension (D2) of perceptual space. When these two rotations have been performed, the
parabolic vowe! surface in principal component space should lie in an orientation that will maximise the
correlation between the first principal component and the perceptual dimension of perceived vowel
backness and the between the second principal component and and perceived vowel height.

TABLE 1. Correlations are between the PCs of LPC-cepstral space and Fi and F2 (1) prior to any
rotation, (2) after rotation about the Z axis and (3) after a further rotation about the X axis. The rotation
angle of the X-Y plane about the Z axis (in degrees) that maximised the correlation in Equation (3) is
shown.

% total variance Unrotated After rotation about Z Afier rotation about X
Sp
Ne PCl PC2 PC3 r(XF2) x(Y,F1) angle r((F2) =(Y,FD rO(F2) oY, F1)
o1 433 223 104 06832 (4951 131 0.8579 07644 0.8579 0.9032
04 446 258 87 08271 05584 326 0.9488 0.8102 0.9488 0.8923
i@ 604 158 9.0 09287 .5874 315 09661 0.6654 0.9661 0.88%4
11 50.1 20.7 8.0 09303 06644 329 09523 0.8480 09523 0.8994
12 487 20.1 83 08290 05357 217 0.8922 0.8060 0.8922 0.9159
13 464 217 85 07684 03798 323 0.8805 0.7797 0.8805 0.7684

0.8997 0.7501
0.8137 0.8259
0.8924 0.9248

19 411 23.0 121 07617 06414 317  0.8997 0.8272
20 465 258 7.3 05725 04335 131 08137 0.8506
24 495 181 9.4 07666 03601 226 0.8924 0.8684

30 423 277 7.8 08116 06411 209 0.8833 07785 0.8833 0.8786
31 395 359 94 03066 0488 277 0.8643 0.6086 0.8643 0.7275
34 452 227 93 07355 05323 131 09167 0.8403 0.9167  0.9027
35 47.8 163 13.1 0.8457 04561 320 09431 0.7676 0.9431 0.9400
36 435 221 11.8 07866 03601 11 09272 0.6649 0.9272 0.8849
M 464 220 95 (0.75244 05096 234 0.9027 07771 0.9027 0.8645

PERFORMANCE OF THE UNSUPERVISED ALGORITHM

To test this unsupervised algorithm, we examined speech frames taken from the vocalic nuclei of the
19 Australian English vowels as uttered by 14 male speakers in /h-vowel-d/ context. The speech data
is described in detail in Hawkins et al (1994a). For each of the 14 speakers, the first three principal
components of the LPC-Cepstral representation of the speaker's 19 vocalic nuclei were calculated.
The speaker's speech frames were then plotted as a cloud of points in the 3D space formed by the first
three principal components of the cepstral representation (which were labelisd X, Y and 2Z).

The Y-X plane was then rotated about the axis formed by the Z axis to maximise the correlation
specified by Equation (3). After this rotation, F2 always correlated strongly with the first rotated
principal component X' and F1 with the second rotated principal component Y'. The correiation
between the X’ and F2 increased from an average across the 14 speakers of 0.75244 prior to rotation to
an average of 0.9027 after rotation. The correlation with our measure of vowel backness (ie. F2-F1
bark) was about the same at 0.9074.

The Y-Z plane was then rotated 225 degrees anticlockwise about the X axis. This rotation did not affect
X'. After this rotation, F1 always correlated strongly with Y’ but with some speakers, there was a slightly
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stronger correlation with the third rotated principal component Z'. Prior to any rotation, the correlation
between Y’ and F1 was only 0.5096 on average across speakers. This increased to 0.7771 after the
first rotation and further increased to 0.8645 after the final rotation. These findings indicate that this
unsupervised algorithm is capable of automatically rotating a speaker's vocalic surface within the space
formed by the first three principal components of LPC-cepstral space in order to extract correlates of
F1 and F2 (or perceived vowel height and vowel backness).

TABLE 2. Correlation of F1, F2 and vowel backness, as measured in Heriz, mel, and
bark, with the first and second rotated PCs (X' and Y’) for each of 14male speakers
vowel backness
r {FLY) r(F2, X% r( F2-F1, X’}

No linear Mel Bark linear Mel Bark linear Mel Bark
9032 8955 8945 .8579 .8493 8418 .8447 .8689 .8743

04 .8900 .8909 .8911 .9456 .9407 9359 9584 9702 .9711
10 .8894 .8847 .8841 .9661 9612 9566 .9492 9539 9534
11 .8983 .8933 .8927 9438 9499 9496 .8989 9129 9155
2 .9159 8115 9109 .8921 .8953 .8934 8603 .8898 .8965
13 7684 7705 7706 .8805 .8750 .8696 .9094 .9201 .9193
19 7501 .7527 7535 .8997 9026 .8997 8660 .8876 .8924
20 .8259 .8350 .8359 .8137 .7862 7719 .8474 .8353 .8297
24 9248 9234 9236 .8924 .8805 8635 .9064 9174 9181
30 .878 8760 .8761 .8833 .8783 .8726 .8565 .8717 .8739
31 7275 7324 7333 8642 .8482 .8393 9430 9475 .9466
34 9027 9037 .90486 .9166 9104 9042 .8771 8BS 8875
35 .9400 9370 9364 .9431 .9329 9256 .9430 .9447 9423
36 .8849 .8807 .8805 .9272 9185 9108 .8839 .8859 .8827
M 8645 8634 .8634 9027 .8949 8882 .8960 .9066 .9074

CONCLUSION

Hawkins et al (1994a) demonstrated that a speaker’s vocalic nuclei lie on a parabolic surface in the 3D
space formed by the first three principal components of LPC-cepstral space. This robust finding
applied to all but one of the speakers examined. Even the exceptional speaker had a vowel surface
which did not deviate greatly from this shape. In a second paper, Hawkins et al (1994b) demonstrated
that the relation between LPC-cepstral space and formant space is approxirnately linear for the first and
second formants but nonlinear for the third formant. This raised the possibility of finding a plane in a
speaker's LPC cepstral space that approximately correlates with F1 and F2 but precludes the
possibility of finding an F3 correlate. In the current paper, we have developed an unsupervised
algorithm that is capable of extracting this plane from the LPC-cepstral representation of a speakers
vocalic system in an unsupervised fashion.
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