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ABSTRACT - Of the various methods of encoding vowels, the cepstral representation has
consistently produced the best performance in automatic vowel classification studies. We
explain this robust phenomenon in terms of our finding that the shape of a speaker's
vowel surface is much more similar across speakers in Cepstral Space than it is in either
Articulatory or Formant Space. The cepstral representation thus aliows an automatic vowel
classifier trained on the vowels of one group of speakers to generalise to the vowels of
another group of speakers.

INTRODUCTION

As discussed by Waibe!l and Lee (1990}, the first question that arises during the design of a speech
recoghition system is how to represent or encode the speech signal itself before recognition is
attempted. In principle, one could simply use the digitised waveform as the input signal. However, at
sampling rates of 10,000 samples per second or more, the amount of processing required would be
prohibitive. The waveform also contains information that is redundant for speech processing, such as
phase information, which can be detrimental to recognition performance (Waibel and Lee, 1990).

Various encoding schemes have therefore been developed that attempt to provide a compact
representation of speech while preserving and enhancing the perceptually relevant cues in speech.
Davis and Mermelstein (1980) compared a number of encoding techniques on the basis of their
speech recognition performance using a template matching technique. They found that variants of
cepstral analysis were the most effective techniques for representing vowels.

More recently, Zahorian and Jagharghi (1993) used a Bayesian classifier and a fully interconnected
MLP neural network to classify monophthongal vowels spoken in the context of isolated CVC words
under a variety of conditions. The steady state portions of the vowels were represented in terms of
either the first three formant frequencies or the coefficients in a cosine expansion of the nonlinearly
scaled log magnitude spectrum (the Discrete Cosine Transformation Coefficients or DCTCs). Except
for small differences, the authors found that these coefficients were the same as the set of cepstral
coefficients. The representation of vowels in terms of ten or more DCTCs was found to result in more
accurate automatic vowel classification than the representation of vowels in terms of the first three
formant frequencies. However, there was no subset of three DCTCs that provided as much
discriminatory power as did the three formant frequencies.

The aim of this paper is to explain why features which encode the smoothed spectra of vowels, such
as the set of low-order LPC cepstral coefficients, have been found empirically to provide the best
vowel discrimination in automatic vowel classification experiments. We propose that the best encoding
strategy will be one that generates a vowel distribution that is highly similar or invariant in shape across
speakers. This will allow a classification system trained using the vowels from one group of speakers to
generalise to the vowels from a new group of speakers. To test this hypothesis, we compared the
structure of the distribution formed by a speaker’s vowel nuclei in three representational domains: the
formant domain, the cepstral domain and the articulatory domain. The structure of a speaker’s vowel
distribution will be determined by the articulatory and perceptual constraints that operate during vowel
production and can be captured in terms of the (1) the intrinsic dimensionality of the distribution as well
as (2) the shape of the surface formed by the distribution.

As well as calculating the shape of the vowel surface, we are also interested in the phonetic quality of
the vowel spectra that are separated by the axis of symmetry of the best fitting vowel surface. Broad
(Broad, 1981, Broad and Wakita, 1977) observed that the distribution of American English
monophthongs produced by an individual speaker in Formant Space formed a piecewise-planar
surface. The speaker’s front vowel targets were observed to lie on one plane and the back vowel
targets on another plane. Broad and Clermont (1989) found that the Australian English
monophthongs could be mapped from 12D cepstral space to 3D formant space using a single finear
mapping. This finding implies that a speaker's monophthongs will form a piecewise-planar surface in
12D cepstral space just as they have been observed to do in 3D formant space.
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In the present study, we use speech frames taken from the entire vocalic nucleii of male speaker's’
monophthongs and diphthongs. We are therefore sampling the entire range of vocalic sounds that
can be produced by the speaker rather than using just the targets of the monophthongal vowels. We
will therefore use a continuous quadratic surface to model a speaker’s vocalic surface rather than a pair
of discontinuous planes. We hypothesise that the quadratic surface that best fits the vowel
distribution of an individual speaker in cepstral space will form a parabolic surface. We predict that this
parabolic surface will have an axis of symmetry that separates the speaker’s front and central vowels
from his back vowels. Because the cepstral domain provides the best method of encoding vowel in
vowel classification studies, we predict that the shape of the vowel surface will be more consistent

across speakers in cepstral space that in other representational domains.

SPEECH DATA

A vowel distribution was derived from the speech of 12 Australian male speakers recorded by Millar et
al (1989). A speaker's vowel distribution is defined to be the set of speech frames taken from the
vocalic nuclei of the eleven monophthongs and eight diphthongs in Australian English as uttered by
the speakers in [h-vowel-d] context. Speech frames were taken from entire vocalic nucleus of each
vowe! and not from its steady-state region or from hypothesised vowel targets. The boundaries of the
vocalic nucleus were obtained by finding the maximum number of speech frames that had a clear-cut
formant structure.

Vowel spectra from the speech frames of the 19 vocalic nuclei produced by a speaker were
represented as a distribution of points in three different representational domains. In the articulatory
domnain, vowel spectra were represented in terms of the estimated area function of the supralaryngeal
vocal tract derived from the vowel spectrum. The area function comprised 12 abutting sections of
equal length but variable radius. This area function was estimated from the set of 12 LPC reflection
coefficients using Wakita’s (1977) algorithm. The set of speech frames that formed a speaker's vowel
distribution may therefore be represented as a distribution of points in the 12 dimensional space
formed by the radii of these 12 sections.

In the formant domain, vowels were represented in terms of the lowest three formant resonances of
the vocal tract. Estimates of the first three formant frequencies (in Hertz) were obtained using Talkin's
(1987) analysis-by-synthesis method as implemented and modified by Clermont (1991). A speaker's
vowel distribution may be represented as a distribution of points within the three dimensional space
formed by the first three formants.

in cepstral space, vowels were represented by the first 12 low-order LPC cepstral coefficients after the
zeroth order cepstral coefficient had been discarded. A speaker’s speech frames may be represented
as a distribution of points within the 12 dimensional space formed by these first 12 LPC cepstral
coefficients.

INTRINSIC DIMENSIONALITY OF A SPEAKER'S VOWEL DISTRIBUTION

We were interested in the intrinsic dimensicnality and shape of an individual speaker's vowel
distribution in the cepstral domain, the formant domain, and the articulatory domain. In the Cepstral
and Articulatory domains, both of which are 12 dimensional, we applied Principal Components
Analysis (PCA) to find the intrinsic dimensionality of a speaker's vowel distribution. Applied to vowel
spectra, PCA is a dimensionality-reduction technique which seeks to find new directions through the
original space that capture as much of the original variance of the vowel distribution as possible. These
new directions are linear combinations of the original dimensions that lie orthogonal to one another .

On average across the 12 speakers, we found that just three Principal Components were required to
explain about 80% of the total variance of a speaker's vowel distribution. The inclusion of a fourth
Principal Component to represent a speaker's vowel distribution did not greatly increase the
percentage of total explained variance. This suggests that the intrinsic dimensionality of both
Articulatory Space and Cepstral Space is three. In other words, the variance of a speaker's vowel
distribution in both Articulatory and Cepstral Space can be characterised in terms of three new
orthogonal directions within the original 12 dimensional space. Formant Space is a three-dimensional
space formed by the first three formants. As long as a speaker’s vowel distribution in this space does
not form a plane, the intrinsic dimensionality of Formant Space is three.

in other words, the intrinsic dimensionality of a speaker’s vowel distribution would appear to be three

regardless of the domain in which this distribution is represented. This result is in agreement with the
earlier work of Pols et al (1969) and makes it possible to replot a speaker’s vowel distribution within the
three dimensional space formed by the first three Principal Components of Articulatory Space and the
first three Principal Components of Cepstral Space with little loss of information.
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SHAPE OF A SPEAKER'S VOWEL DISTRIBUTION

To find the shape of the vowel distribution in a 3D subspace formed by the first three Principal
Componentis (which we labeiled X, Y, and Z), we used the least squares criterion to fit a general
quadratic equation of the form,

Z=aX?+bX+c+dV’ +e¥ + XY {Eqn. 1)
to the distribution of a speaker’s vowels within the 3D subspace formed by the principal components
X, Y, and Z. We found that the vowel distribution of most speakers formed a parabolic surface with an
axis of symmetry that separaied the speaker’s front and back vowels. To simplify the equation required
to represent this surface, the three dimensional subspace formed by the three Principal Components
was rotated about the speaker's vowel distribution. Two rotations were used to make the axis of
symmetry of the best fitting quadratic surface lie perpendicular to the First Principal Component (X).
First, the plane formed by the first and third Principal Components (X and Z) was rotated about the axis
formed by the third principal component Y to maximise the linear correfation,

H(Z, 7' =aX"* +bX’' +c) (Eqn. 2)
The plane formed by the second and third principal components (Y and Z) was then rotated about the
axis formed by the first principal component X to further improve the correlation given by Equation (2).
A third rotation was then performed to eliminate the cross-product term XY in the best fitting quadratic
equation. After reorienting the 3-dimensional Principal Component space surface using these three
rotations, the three axes of this rotated subspace were standardised to have a mean of zero and a SD
of one. A general quadratic equation of the form specified by equation (1) was refitted to the vowel

distribution and the main axis of symmetry was calculated using the equation,

x="b, (Eqn. 3)
where X was the axis formed by the First Principal Component after the three rotations had been
performed.

We were also interested in the extent to which this axis of symmetry separated the speaker’s front and
back vowels. Because we are dealing with speech frames from the entire vocalic nucleus rather than
vowel targets, we devised a method for identifying whether the spectrum of a vowel has the timbre of
a front vowel or the timbre of a back vowel. For each speaker, we drew a line on the speaker's Fi-F2
plane that joined the midpoint of the speaker's vowels [¢e] and [a] to the midpoint of his vowels [U ]
and [u ]. We used the average F1 and F2 frequencies of these vowels, averaged over the entire
vocalic nucleus of the vowel, to locate these vowels in the F1-F2 plane. Vowe!l segments lying above
the line in the speaker’s F1-F2 plane were considered to belong to the phonetic class of the front or
vowels and vowel segments lying below this line to belong fo the phonetic class of the back vowels.
We then calculated the percentage of a speaker’s front and back vowel segments that lay to each side
of the axis of symmetry axis of the best fitting quadratic vowel surface in each of the three domains.

RESULTS

The vowel distribution in each of the three domains was adequately described by a quadratic vowel
surface. In the subspace formed by the three principal components of articulatory space, there was an
average correlation across the 12 speakers of 0.8287 between the best fitting quadratic surface and
the speaker's actual vowel distribution. The average correiation across speakers was 0.756 in the
subspace formed by the three principal component of Cepstral Space and 0.601 in formant space.

By rotating the vowel distribution within these 3D spaces, we found that the best fitting vowel surface
could be described by a quadratic equation that had just four terms,

7’ =aX’* + bX’ +c+eY’ in Articulatory and Cepstral Space,

F, = aF,? + bF, + ¢+ ¢F, in Formant Space
Other terms in the best fitting quadratic equation could be discarded because they were associated
with coefficients that had negligible magnitude.

Formant Space. The best fitting quadratic vowel surfaces in formant space are pictured for each
speaker in Figure 1. Only a subset of speakers (Speakers 01,04,11,12,24,34) had a vowel surface
that was parabolic in shape. The vowel surfaces of other speakers were saddle-shaped (Speakers 30
and 36), bowel-shaped (Speaker 13) and convex rather than concave (Speakers 20 and 35).
Nevertheless, these vowel surfaces usually had an axis of symmetry that provided reasonable
separation between the speaker’s front and back vowels. On average across the 12 speakers, the axis
of symmetry of the best fitting quadratic surface separated 97.3% of & speaker’s front vowels from
75.3% of his back vowels.
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FIG 3. Vowel surface of 12 speakers in Cepstral space.

Articulatory Space. On average across the 12 speakers, the first three Principal Components
explained 93.6% of the total variance of a speaker's vowel distribution in 12D Articutatory Space. The
best fitting quadratic vowel surfaces in the subspace formed by these three principal components
after rotation are pictured for each speaker in Figure 2. The shape of the vowel surface varied
considerably across speakers. Although most speakers had parabolic-shaped vowel surfaces
(Speakers 01, 12, 13, 19, 24, 30, 34, 35, 36), one had a planar vowel surface (Speaker 04), another
had a saddle-shaped surface (Speaker 20), and another had a slightly bowl-shaped surface (Speaker
11). The vowel surfaces of some speakers were highly curved about the axis of symmetry (Speaker
19) whereas the surfaces of others had little curvature (Speakers 35 and 36).

Despite this variability in the shape of the vowel surface, the vowel surface of most speakers had an
axis of symmetry that separated the speaker’s front vowels from his back vowels. The exceptions were
Speaker 04 and Speaker 11. On average across the 12 speakers, the axis of symmetry of the best
fitting quadratic vowel surface separated 82.2% of a speaker’s front vowels from 76.5% of his back
vowels.

Cepstral Space. On average across the 12 speakers, the first three Principal Components
explained 77.3% of the total variance of a speaker’s vowel distribution in 12D Cepsiral Space. The
best fitting quadratic vowel surfaces in the subspace formed by the rotated principal components are
pictured for each speaker in Figure 3. The vowel surface is highly similar in shape across the 12
speakers being parabolic for all but speaker 12. The vowel surface of this speaker was parabolic but
slightly saddle-shaped. The vowel surfaces of ail speakers had an axis of symmetry that clearly
separated the speaker's front and back vowels. On average across the 12 speakers, the axis of
symmetry of the best fitting vowe! surface separated 92% of the front vowels from 86% of his bach
vowels.
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CONCLUSION

The surface formed by a speaker’s vowel distribution was well described by a quadratic equation with
just four terms. This means that just four parameters are required to accurately represent the structure
of a speaker’s vowei distribution.

The shape of the best fitting quadratic vowel surface was much more similar across speakers in
cepstral space than was the case in either formant space or articulatory space. In cepstral space, the
vowel surface consistently formed a parabolic surface with an axis of symmetry that separated the
speaker’s front and back vowels. In the formant and articulatory domains, the axis of symmetry of the
best fitting quadratic surface provided good separation between a speaker’s front and back vowels but
the vowel surface was not consistently parabolic in shape.

This result helps to explain why automatic vowel classifiers perform best when vowels are represented
in terms of cepstral coefficients. The consistent shape of the vowel surface in Cepstral Space across
speakers means that an automatic vowel classifier trained on vowel! distributions of one group of
speakers will be able to generalise to the vowel distributions of other speakers.
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