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ABSTRACT - Recent work has shown that wavelets can provide an effective speciral
representation for use in speech analysis and speech recognition because of their ability to
merge both wide-band and narrow-band spectral representations. There are, however,
some difficulties associated with using wavelet parameterisation with HMM-based speech
recognition. This paper presents a method which uses PCA to transform the feature space
of wavelets so that they can be more effectively used with HMMs. The approach yields good
results; up to 25% error-rate reduction is achisved on the difficult E-set discrimination task,
along with a seven times reduction in the number of parameters. Further, the fraining and
execution times with the PCA features is greatly reduced.

INTRODUGTION

Recent work (Basile et. al., 1992} has suggested that wavelsts may provide a more efiective spectral
representation for speech analysis than conventional wide-band and narrow-band spacirograms. The
primary advaniage offered by wavelsts is the constant time-bandwidih product across different
frequencies which provides the relative advarntages of both wide and narrow-band representations. At
higher frequencies (> 2 kiHz) a narrow ime window with wide frequency range is used to give accurate
representations of short term events (e.g. plosive transients which occur in only a few milliseconds). At
lower frequenciss (< 1kHz) a longer time window with more accurate frequency resolution is used which
gives more precise representation of slow moving formants and harmonics. The use of this construction
gives this wavelet design similar time-frequency capabilities to human audio perception.

Previous work by one of the authors has investigated the use of wavelets for speech recognition as an
aiternative speech parameterisation technique. Initial work (Favero and King, 1993) indicated that
wavelets may offer effective parameterisation for HMM-based recognition and providing slightly bestter
accuracy than Mel-Frequency Cepstral Coefficients (MFCC). There were, however, three primary
difficuliies with the use of wavelets along with conventional HMM and ANN-based recognisers.

» The wavelet parameters are not time-synchronous; the parameter raie at higher frequencies is
greater than at ow frequencies.

e The parameter rate is considerably higher than established parameterisation methods; MFCC at
around 1200 parameters per second; time-grouped wavelets at 5250 parameters per second;
frame-synchronous wavelets at 9000 parameters per second.

° Because of the speciral characteristics of speech, adjoining wavelet parameters are highly
correlated which reduces the efficiency of HMM modelling.

Principal Component Analysis (PCA), a multivariate statistical technique (described in more detail
below), was applied to the wavelet parameters tc address each of the three difficulties described above
and with the aim of improving the representation of wavelets for use with HMiMs. The approach achieved
promising results. A seven-fold reduction in data rate was achieved along with an 25% error-rate
reduction on the E-set recognition task compared o MFCC. This paper describes the waveiet
parameterisation, the application of PCA, the experimental setup, results and discussion.
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WAVELETS

Wavelet theory is based on generating a set of filiers by diiation and iransiation of a generating waveiet.
All of the waveleis are scaled versions of the “mother wavelet”. This requires that only one filter be
designed and the others will follow the scaling rules in both the time and frequency domain.

sgue

A set of waveleis is generated from the mother wavelet \¥(t) by:
i

Ja

i-b
\ya,b(t) = \F(T)

The wavelets are contracted (a < 1) or dilated (a> 1) and are moved over the signal to be analysed by
time step b. Contraction and dilation scale the frequency response of the generating wavelet to producs
a set of wavelets that span the desired frequency range. The set of wavelets can be considered as a filter
bank for speech analysis.

The continuous wavelet fransform (CWT) of a signal s{f) is defined as (2> 0, bis real):

1 t-b
CWT(b a) = r/_;fs(t)‘y(T) dt

The discrete wavelet transform (DWT) of a sampled signal s(k) is given by (i, k are integers):
DWT(4, &n) = l;wﬁ.— sk
&% 4

The DWT comnputes data poinis an octave space apart on a dyadic grid if & = 2. (A dyadic grid has half
of the number of data points at each successive lower octave (Daubechies, 1992; Rioul and Veiterti,
1981). The value of a can be chosen such that more than one wavelet coefficient per octave is generated
(voices of an oclave). If the initial generating wavelet is defined appropriately then sub-octave resolution
can be accommodated. This can be achieved by choosing:

1
a= 2numberOfVoices

The sampled CWT (SCWT) is a variation of the DWT. This produces frame synchronous data (redundant
atlower frequencies) but retains the features that are offered by the wavelet iransform. The sampled CWT
is given by:

SCWT(d,n) = ,L;k:\y(k_:i')s(k)
Jd d

Feature Vectors

Two forms of feature vecior derived from the SCWT are used in this work. The first is the direct use of
the 18 point vector that is the output of the SCWT. There were slight modifications to the calculation
method to reduce the computation effort; wavelet coefficients that lie on the dyadic grid are simply copied
1o coefficients that do not lie on the grid.

The second vector is composed from the data values that lie on the dyadic grid. The 42 point vector spans
four time intervals of the 18 point vector. Figurs 1 lustrates how the 42 point vecior is composed from
the 18 point vector.

297



)

Figure 1. {a) Data on the dyadic grid.
(b) The 42 point vecior composed from data on the dyadic grid.

PRINCIPAL COMPONENT ANALYSIS

PCA (Anderson, 1984) is a muftivariate statistical technigue, often used for data compression, which
reduces or reconfigures festure space. it achieves this by producing linear weightings of the elements
of the input feature vector which transform the feature space with the following characteristics:

« Each PCA vector explains a maximum of the variance of the input features not already modelled
by a preceding PCA vector,

«  Successive PCA vectors explain reducing proportions of the input feature variance,
«  Each PCA vector is uncorrelated with preceding PCA vectors,
+  The maximum number of PCA vectors is equal to the number of input features.

The calculation of PCA weightings is straight-forward. The PCA weightings are the eigenvectors of the
covariance mairix of the input feature set. The eigenvalues indicate the proportion of variance explained
by each PCA vector and thus provide a useful metric for assessing the transformation.

We apply PCA to the sets of time-grouped and fime-synchronous wavelet parameters to obtain a
transformed feature space with uncorrelated features and with a high percentage of the wavelet variance
explained in a few wansformed parameters. The calculation of the covariance matrix and of the
eigenvectors takes only a few minutes for the complete training database described below. Thus, the
use of PCA adds only a minor increase o the computational overhead of training and testing.

EXPERIMENTAL SETUP

The results presented here are based on the NIST T1-46 word database. This database contains 16
speakers. Each speaker provides 26 repetitions of each of 46 words. Ten samples of the word are used
for training and the 16 remaining are used for testing. The database was down-sampled to 8kHz. The
leading and trailing silences were removed from each utterance prior to performing the wavelet transform.
We chose the “E-set” subtask (b, ¢, d, e, 9, p, t, v, z) 10 assess the PCA transform because the difficulty
in discriminating the initial consonant makes this a difficuli speaker independent recognition task which
is sensitive to the speech parameterisation.
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The experiments described here used continuous density HMMs with 5 states and 5 weighted mixtures
(Rabiner, 1989). HMMs were trained from the PCA transformed wavelets from both time-grouped and
fime-synchronous wavelet veciors. Varying numbers of PCA features were testing (representing a
varying percentage of the underlying variance) to determine a suitable trade-off between vector size
and recognition accuracy.

HRESULTS

PCA Calculation

We first report resuls on the application of PCA to the wavelet features. Figure 2 shows the cumulative
percentage of variance explained by PCA for time-grouped and frame-synchronous wavelet vectors. in
Figure 2a, the first 7 PCA wavelet parameters based on frame-synchronous wavelets explain 90% of the
variance and the first 11 explain 95% of the variance. In Figure 2b, for the time-grouped wavelets, the
first 12 PCA paramsters explain 90% of the variance and 21 paramsters explain 95% of the variance.
Clearly, PCA is abls to “distil” the variance of wavelets into a relatively small number of features.
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Figure 2: Cumulative % of Variance explained by PCA vectors based on
(a)Frame-Synchronous Wavelets and
(b) Time-Grouped Wavelets.

Interestingly, there is a superficial resemblance between the discrete cosine transform (DCT) used in
MFCC calculation and the first few PCA weightings. There s little resemblance for the remaining vectors.
It is not clear whether there is any particular significance fo this resuit.

Recognition Resulis

Table 1 shows the percentage of variance explained (as in Figure 2), the data rate, and recognition
accuracy for different numbers of PCA vectors for both the frame-synchronous and fime-grouped
wavelets. The first observation is that accuracy increases with the number of PCA vectors up to a point,
and then drops off slightly. We offer the following explanation; the PCA transformation has captured the
most important information in a small number of features which leaves “noise” in the remaining features.
This noise reduces the effectiveness of the recognition modelling. The second observation is that a
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relatively small number of PCA features is required to achieve satisfactory recognition accuracy. Four
PCA features derived from forty two time-grouped wavelst parameters provide significantly better
performance than both the untransformed wavelet values (with over ten-fold reduction in data raie) and
the MFCC (with less than half the data rate).

£ POA Frame-Synchronous Wavelet Time-Grouped Wavelet
Vectors | s variance | 3200 | Mhesracy | % VA | (arima) | Acourcy
1 64.2 500 428 675 125 -
2 73.2 1000 60.0 72.8 250 -
4 84.7 2000 68.3 7.9 500 69.8
[ 88.7 3000 69.5 838 750 70.1
8 91.9 4000 71.2 86.5 1000 71.2
10 94.4 5000 69.8 88.5 1250 72.9
12 96.3 6000 67.6 20.1 1500 69.3
18/42 100.0 8000 66.5 100.0 5250 -

Table 1: Percentage Variance, Data Rate and Recognition Accuracy for varying numbers of PCA
vectors for both Frame-Synchronous and Time-Grouped Wavelets.

Table 2 provides comparative results for MFCC (Favero and King, 1983), untransformed frame-
synchronous wavelets, untransformed time-grouped wavelsts (Favero and Gurgen, 1994), and results
for the best performed PCA transformed frame-synchronous wavelets and PCA transformed fime-
grouped wavelets from Table 1. The use of the PCA ransformation has significantly improved recognition
accuracy in comparison fo both MFCC parameterisation and non-PCA transformed wavelet parameters.
The application of PCA to the frame-synchronous and ime-grouped waveleis has provided error-rate
reductions of 14% and 19% respectively. The best performance gives a 25% error-rate from MFCC with
a similar data rate.

Paramsterisation Vector Size | Frames/sec | Data Rate Accuracy
MFCC 12 100 1200 63.9%
Frame-Synchronous Wavelets 18 500 9000 66.5%
Time-Grouped Wavelets 42 128 5250 66.6%
PCA Frame-Synchronous Wavelets 8 500 4000 71.2%
PCA Time-Grouped Wavelets 10 125 1250 72.9%

Table 2: Comparison of Parameterisation Methods

CONCLUSION
This work has shown clear benefits from the application of the PCA transformation to wavelet

parameterisation. We have been able to reduce data rates by a factor of seven and simultaneously
improved recognition accuracy on the E-set task For frame-synchronous wavelets, the recognition
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accuracy improved from 66.5% to 71.2% with the PCA transformation, and for ime-grouped wavelets the
equivalent improvement is from 66.6% to 72.9%. These results are well in excess of MFCC performance
(63.95). The drop in the data rate has also provided substantial improvements in both the training and
execution time for the HMMs.

It is not possible to determine whether the improvements in accuracy arise from more the compact
parameterisation of the speech signal or because the PCA veciors are uncorrelated and therefore better
modelled by the HMMs. Perhaps the improvements are due {0 a combination of both factors.

lishould be possible to extend this work in a number of ways. The covariance matrix can be manipulated
1o vary the relative imporiance of each wavelet parameter; this is the equivalent of cepstral liftering.
Linear discriminant analysis could be used as an alternative to PCA to provide optimal separation of

phonemic classes. Temporal values (6.g. delta or delta-delia parameters) could be introduced to the PCA
modetling fo capture the dynamic characteristics of speech.
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