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ABSTRACT - We present a novel approach for improving visual facial image reconstruction
by utilizing information in the accompanying acoustic speech signal. From analysis of the
speech signal and knowledge of the mutual information between speech and visual fea-
tures of facial images, the method can be used to synthesize moving facial images. A recur-
rent neural network is used to map between the acoustic and visual spaces: the input to the
RNN is 21 acoustic speech features and the output is the position values of 15 facial feature
peints and the first 20 coefficients of a principal components representation of the mouth
area.

INTRODUCTION

This research explores the mutual information which exists between an acoustic speech signal and the
corresponding visual facial image. The work is motivated partly by potential applications: to improve the
quality of the mouth image in low-bit rate videophone and videoconference systems; and to provide
facial image animation in multimedia communications. The articulatory connections between the audible
speech signal (what the speaker says) and the visible speech signal (what the speaker’s face looks like)
provide the possibility of deriving one kind of information from the other (Massaro, 1987).

In natural face to face speech perception, acoustic speech is reinforced to some degree by observation
of the speaker’'s mouth. Visible speech perception is especially useful when the acoustic signal is
degraded by noise, while for hearing impaired people, lip-reading provides direct access to speech.
Several workers have shown that recognising the visual speech signal can significantly improve speech
recoghnition performance, compared to acoustic recognition alone (Petajan, 1987, Duchnowski et al.,
1994).

Running paralle! with these studies have been several endeavors to utilize the acoustic speech signal to
improve visual facial image reconstruction or synthesis. Computer graphics animation methods for gen-
eration of talking faces, with the synthesized mouth image being derived from phonetic descriptions of
text have been demonstrated (Brooke et al., 1994; Massaro and Cohen, 1994). Brooke's method uses
hidden Markov modelling and principal component analysis and incorporates visible features of primary
articulators such as lips, teeth, and tongue derived from real images. Lewis {(1991) has described an
automatic lip synchronizing method that created mouth animation synchronized to the speech input by
recognizing phonemes by linear prediction and associating the phonemes with mouth positions to pro-
vide key frames. Despite the speech to image synchronization, the synthesized images were reported
as lacking reality.

The derivation of acoustic speech features from visual speech features, or vice versa, can be consid-
ered as a transformational mapping between the two feature spaces. While no explicit relationships
between acoustic and visual speech features have been found; artificial neural networks have become a
widely accepted and efficient approach to the computation of the transformation. Promising results have
been obtained for utilizing neural neiworks to estimate the acoustic speech structure from the concur-
rent visual speech signals (Sejnowski, et al., 1989). There has been relatively little research on the
inverse process of inferring visual speech information from acoustic speech signals, although Knotts et
al. (1993) have discussed a system that can aid hearing-impaired persons to produce normal speech. In
this, an artificial neural network was used to transform from the acoustic parameters into visible faciaf
movemenits with particular emphasis on the tongue, iips and jaw position.
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This paper presents a novel approach to facial image reconstruction by utilizing the acoustic speech sig-
nal. Selected speech feature parameters are applied to the input of a feature mapper with two recurrent
neural networks (RNN). This generates feature parameters which describe facial actions and expres-
sions, as described in the next section. Continuously varying images of the face corresponding to the
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speech can be synthesized (Luo, 1994) with the visual feat rameters derived from the tra
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tion combined with a database which inciudes prototype 3D human head models, mouth images and
eigenmouths.

Real data, both speech signals and corresponding faciai images, have been used to train the feature
mapping RNNs and justify the algorithms. Quite good reconstructed image quality is achieved, as
assessed against subjective fidelity criteria of “naturalness” and “faithfulness” to assess the overall head
images, and an objective image quality criterion which measures the differences between the synthe-
sized and original mouth area images corresponding to the enunciation of the speech.

MAPPING ACOUSTIC SPEECH TO VISUAL SPEECH

With acoustic features at their input, the trained RNNs can output parameter values describing the posi-
tions of characteristic facial and mouth points from which the whole facial image may be reconstructed.
In this section, the selections of both the acoustic speech features and the visual speech features are
first introduced, then the details of the feature mapping methodology are discussed.

Input Acoustic Feature Selection

The following 21 acoustic speech features are selected to characterise the acoustic speech signal: the
first 12 mel frequency cepstral coefficients (MFCCs), log energy of the speech, the first 4 formant fre-
quencies and bandwidths (fy, 5, f3, T4, b1, bo, by, by). These features have been chosen for their ability
to discriminate both phonemes and visemes (Luo and King, 1994). Figure 1 demonstrates the methodol-
ogy for calculation of these features.
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FIGURE 1. The block diagram of the acoustic speech feature calculation

Note: LPC: linear predictive coding; MFC: mel frequency cepstral;
f; & by: formant frequency & bandwidth;

Output Visual Feature Selection

Two groups of visual speech features are involved in the mapping. The first one is the 30 values (fpy,
fpo, ..., fpag) representing facial feature points characterizing the facial expression with speech, including
14 mouth contour feature points and the chin point; the other is the 20 coefficients (@, ty, ..., pg) of the
inner mouth area image principal components derived with the optimal Karhunen-Loeve transformation
(KLT) (Gonzalez, 1987).

For training these networks from real images, the chin point and the 14 mouth contour feature points are
extracted from a front-viewed facial image in a 2-step procedure (Luo, 1994). First, the head contour
and mouth contour are located by combining an active contour model with multi-layer neural networks.
Then these feature points are detected by the calculation of object orientation and mass centre under
the assumption that the face is symmetric. Using these facial feature points, a complete facial image can
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be synthesized through a 3-D head model-based transformation. This does not, however, provide satis-
factory modelling of the inner mouth area such as lips, teeth, tongue and palate. in order to get over this
problem, the inner mouth images are represented by coefficients derived with the optimal KLT.

stemn to describe the inner mouth image. Thm is a set of haclc
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encode progressively smaller variations. It is an optimal transformation in the sense that the mean-
square error introduced by truncating the expansion is a minimum. In the optimal system, any inner
mouth image X; (within or outside the training ensemble) can be represented, with minimal truncating

error, with M ecgenmouths as
M

= Z%“ﬁmx (EQ 1)
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where &'; is the approximation version of X" constructed with M eigenmouths; my is the mean vector
of training set; the coefficient @, describes the coniribuiion of the kth sigenmouth in representing X/,
and is given by
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FIGURE 2. Mapping acoustic speech features into visual speech features

Note: ;'s: the principal component coefficients of the inner mouth area image
fp;"s: positional coordinates of the facial feature points

Feature Mapping Methodology

The methodology for mapping the acoustic speech into the visual speech is depicted in Figure 2. The
feature mapper is composed of two recurrent neural networks, RNN1 and RNN2, which infer the 20 prin-
cipal component coefficients of the inner mouth area image and the 30 positional coordinates of the
facial feature points respectively. The inputs are all the same to both the ANNs.

The process of mapping acoustic speech features into visual speech features is one of parameter esti-
mation. Thus the output space is described with parameters of continuous value, generally normalized
fo the range of -1 and +1. The RNN can be considered as a sequence of backward error propagation
networks (Rumelhart, Hinton & Williams, 1986). For both RNNs we have used the topology (Werbos,
1990) illustrated in Figure 3. There are both forward connections (dark shaded arrows) between current
input neurons and current hidden neurons and output neurons, and backward connections (shaliow
shaded arrows) operating over the previous time period. The RNNs have been trained using back prop-
agation through time, with the deita-bar-defta procedure for updating network weights (Jacobs, 1988).

EXPERIMENTS AND RESULTS
Data Collection and Pre-processing
To test the feasibility of the mapping from acoustic speech features to visual speech features, acoustic

speech signais (digilized speech waveforms) and visual speech signais (facial images), corresponding
to the enunciation of the English phonemic alphabet and 50 selected continuous sentences, were
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FIGURE 3. The RNN used in feature mapping

Note: I(t), H(t), O(1): input, hidden, and output neurons at time t; t-1:1 time period ahead time t;
e forward connection wemse backward connection

recorded. The speakers facial images were recorded frame by frame with 40ms frame length using the
PAL video standard. The images were digitised o 316450 pixels monochrome with a 256 leve! grey
scale. For each image, two kinds of feature exiraction procedures were employed. Firstly, motion analy-
sis was applied to track the contour of the head and the contour of the mouth, then the 30 values repre-
senting facial feature points were calculated and normalized to [-1, +1]. Secondly, the mouth area was
automatically located and cut to form a mouth area sub-image of size 100*50 pixels, to which the KLT
analysis was applied to derive the coefficients of the eigenmouths.

The acoustic speech signals were analysed fo produce the 21 input speech features for the mapping.
Since each image frame has a fength of 40 ms, the speech analysis process provides a set of speech
feature every 40 ms. In practice, the speech features are calculated every 20ms, but only the set of
every other 20 ms is selected as the speech features of the current 40ms segment.

The number of free parameters in the feature estimation neural network is a trade-off between computa-
tional efficiency, desired accuracy, and the potential problem of over-learning the data. On the one hand,
if the network size is not large enough, the network is unable to pass the relevant information in the
acoustic speech signals to the output units and the network performs poorly. On the other hand, i the
network size is 100 much large, the network will try to memorize the idiosyncratic details of the training
set, and may fail to generate ruies that apply to the testing set. Various network topologies were
selected and tested for RNN1 and RNN2 in order io choose an adequate network size while minimizing
the effects of over-learning. The training process was set to stop after 200,000 iterations considering the
practical computing time and the accuracy achieved. Each of the networks was trained with 5585
frarnes of training data set and tested on 620 frames of testing data. Two kinds of network topology for
RNN1 were investigated, with sizes 22-10-20, and 22-40-20. The sizes of 22-10-30 and 22-20-30 were
used in the investigation for RNN2.

Results and Discussion

Table 1 summarizes the mapping performance of the two network configurations and the quality of the
reconstructed images based on these principal components for both the training set and the testing set.

Net Input Net Output | Net Size | Output Ermvor Mean Square Error
(OE) (*103) (MSE) (*105)
train test train test
1st 12 MFCCs, fy, fp, f3, 4, | @'}, @) ..., |22-10-20 | 2.3 49 1.744 3.478
by, by, bg, by log of energy | w'pg
Tst 12 MFCCs, fy, fa, f3, fg, | @), @', ..., | 22-40-20 | 1.7 3.3 1.332 2.891
by, by, bg, by log of energy | w'py

TABLE 1.  Eigenmouth mapping performance of RNN1 with different topologies

The output error OE reflects the network’s ability of inferring the 20 principal components (PC), and is
defined as the average square error of the actual network output o/’s to the desired network output
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surmmed over the whole training set or testing set. The better mapping resuit with OE equating 0.0033 is
achieved on the testing set by the RNN1 with 40 hidden neurons. Figure 4 gives the original first 5 PC
coefficients and the inferred ones corresponding to the enunciating of phonemes /)/ and /3/ expanding
over 30 frames. From the figure, it can be seen that the shapes of the PC coefficients mapped by RNN1

T

4.50 [—

4.00 —

2.00 [~
1.50 |-
1.00 |- - ]
o
0.50 |- -
0.00 - . ’ —
\;\N_,—»---—"”"‘:
0.50 |- 27 —
L L L 1 1 ! 1 x
0.00 5.00 10.00 15.0¢ 20.00 25.00 30.00

FIGURE 4. Variation of the first 5 principle component coefficients, both the original ones and
those inferred by RNN1, for phonemes /l/ and /3/ expanding over about 30 frames.
Note: X direction: time sequence; Y direction: normalized ([-1,+1]) coefficients spaced at one unit;
Ciorig: original coefficient of the ith principle component;
PCCiRNN: inferred coefficient of the ith principle component;

The influence of the OE value on the image quality can be measured with the objective criterion MSE
which is defined as the mean square error, averaged over the training set or testing set, between the
original face image and the image reconstructed with M principal components derived by RNN1. Figure
5 shows the feature mapping results by RNN1 with structure 22-40-20 on 4 consecutive mouth area
images in testing set. The first row gives 4 real mouth area images corresponding to the speech of
which the acoustic features are input to RNN1 to infer 4 visual feature vectors, with each vector contain-
ing 20 coefficients of eigenmouths. The second row shows the corresponding mouth area images
reconstrucied with the eigenmouths according io the inferred coefficients. It can be seen that the mouth
area images reconstructed according to the mutual information between acoustic speech and visual
speech are generally “faithful’ to the original expressions.

FIGURE 5. Resuits of mouth area images mapping from speech by RNN1

(The upper row is 4 consecutive mouth area images from testing set; the lower row is the corresponding
images reconstructed with the eigenmouth coefficients inferred from speech by RNN1.)
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Experiments on mapping acoustic speech onto facial features characterizing the whole face actions and
expressions with speech have also been conducted. Based on the criteria of the normalized average
deviation between the desired feature set and the feature set derived with RNN2, and a shape similarity
function which measures the shape similarity between the desired mouith contour and the mouth contour
represented by the features derived with RNN2, satisfactory facial feature reconstructions have been
achieved.

CONCLUSIONS

We have described a novel approach for mapping acoustic speech feature space onto visual speech
feature space by recurrent neural networks. The system has been trained efficiently and tested with spo-
ken and facial data collected from one speaker. Criteria have been developed to assess the quality of
the reconstructed facial image sequence. Initial results are promising. Clearly the RNN mapping tech-
nique facilitates good modelling of the temporal connections between the acoustic and visuai signals.
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