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ABSTRACT - This paper investigates the phenomsnon of Automatic Speaker ldentification
asymmetry. Automatic Speaker ldentification attempts to identify one or several speakers in
a mulii-speaker environmeni by analysing the speech signal. In this situation, some
spealkers may routinely be mistaken for others while the latter are rarely identified as the
former. The MUIitiple Signal Classification algorithm was used to provide an eigenvector
aporoach, pariitioning the problem space into signal plus noise and noise eigenvalue
subspaces. A speaker associated with high eigenvalues in the first subspacs (well defined
speciral patterns) was not routinsly mistaken for another. The opposite was found for thoss
with low eigenvalues in that subspace {weak speciral pattermns). Hence, a disparity in
speciral pattern strengths from speaker to speaker may strongly influence asymmetry in
Automatic Speaker identification.

INTRODUCTION

The aim of Automatic Speaksr identification (ASI) is to identify the person most liksly to havs spoken
from within a reference database of speakers. This is & maturing science which draws on probabilistic
techniques and Ariificial Neural Networls (ANNs). While good resulis have been reported for some
time (Matsui and Furui, 1991; Rudasi and Zahorian, 1991), the core problem of minimising alse
rejections” and “faise acceptances” (U'Shaughnessy, 1986) is a matier of ongoing research.

This paper focuses on asymmetry arising from a spesker being eronsously identified as another
while the latter is less frequently (if ever) mistaken for the former. This phenomenon is important
sincs it influences ASI scorss, thus ASI cutcome. A similar fype of asymmetry has bsen reported in
the field of computer vision by (Mumford, 1991 ).

CHOICE OF PARAMETRIC REPRESENTATION FOR SPEECH

A broad range of paramelric representations for speaker recognition, using the Linear Prediction
Coding (LPC) method, are available. LPC parameters are adversely affected by the frequency
response of the recording device. However, for cepstral cosfficients, this effect may bs nullified by
subtracting fime averages over an ertire utterancs. Cepstral parameters are independent of the
recording device characteristics in addition to allowing the best AS! performances (Sethuraman and
Gowdy, 1989). Because of these considerations, a mel-based cepstral represemtation was selected
for the present study.

The speech signal used was provided from tapes belonging to an audio-visual library. These tapes
contained the voices of twenty English speaking males. The signal was digitised at 10 kHZ (12 bits). it
consisted of 55 second frames, each frame having been subdivided into 40 segments. The segments
were high-frequency pre-emphasised with fransfer function 1-0.98z" then windowed using a non
overlapping 256 point Hamming Window.

EXPERIMENTAL FRAMEWORK

Classifiers for Automatic Speaker ldentification

interacilve Laboratory System (iLS). This is a well esiablished general purpose signal processing
and analysis package (Signal Technology Inc, 1985). # supporis speaker patten analysis and

identification. ASI is a two step process. Firstly, the Statistical Measures (SME) command is used to
process raw data according to a Means and Inverse Covariance Matrix algorithm. The Best Fit
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Pattern Recognition (BPA) algorithm is then applied to the output. BPA performs weighted Euclidean
distance computations between the set of reference pattermns (generated by the SME) and the test
data. The latter is typically an independent set.

Higher Order Neural Network (HONN). This a feed-forward ANN architectures also known as
Functional-link networks (Pao, 1989). The flat version of this network (Castellano and Shridharan,
1993) was used in this study. HONN allows for each acoustic parameter, in & vector, to be
expanded into a higher dimensional data space (Hush and Salas, 1989). This was made possible by
third order tensor link transformations applied to the input of the ANN. Each cepsiral component x;
(O<i<14) was expanded into the four COMPONENS: X, XXq, XXy 8N XX X, 0. Xig and X5 were
expanded 85 X4 Xig%i5 X14Xy Xya4Xy5%y @ Xi5, XqgXq, XqgXa, Xi5XX, respectively. The expanded
vector was then processed at the ouiput layer where the number of processing elements was set
equal to the number of speakers present in the daia.

Eliminating classifier bias

iLS and the HONN weres considered separately in the AS! role. Being radically different technologies,
any results they share are expecied to be free of both systems' inherent bias. Let P bs the number of
spealkers present in the data and N the number of AS! systems avaslab!e Let i) = ([1,2,....°P° and n

a positive integer less than N. A composite confusion mafrix {M, comp,ijimay be deduced from N
confusion matrices (M, M, ; {one for each AS! system avaxlabl?)"gy applymg the simple formula

Ng M,

Moompis = —W
;Mw

(1)

In this case P=20 and N=2. The composite matrix will only include results shared by {and averaged
over) all N matrices. The magnitude of matrix components will reflect the extent to which the
comesponding speciral characteristics are shared amongst the N matrices. Once the composits
malrix is obtained, a measure of intra-speaker asymmetry with respect to the diagonal can be
deduced. For a given speaker x, this is expressed as

P
ASYMy=7¢v | (column x, row j) — (row x,column j) |
H @

The Music Algorithm - Review

In parallel with the computation of matrices, the MUitiple Signal Classification algorithm (MUSIC) will
be used to orthogonslise spsech frames (both Waining and testing). MUSIC is a high resolution
frequency estimation algorithm (Haykin, 1891). When used in ASl, the operation vields eigenvalues
represemtative of each speaker's spectral patierns. MUSIC is briefly reviewed here.

For an input signal consisting of L uncorrslated zero-mean complex sinusoids (angular frequendcies:
@y, O (m omega) and average powers P,,..P) and zero-mean additive white noise with
variance o~ (O': sigma), the ensemble-averaged correlation matrix R is given by

R=5D8" +5%1 3

1is an (M+1)? identity matrix. D the diagonal mafrix and S an (M+1)-by-L frequency matrix are given
respectively by:

= diag(Py...P) @
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exp (- ja ) exp (B )
S = . e .
, . )
| e (-iM@) - exp(-May) |
Let & .., Ay, be the eigenvalues of Rand i 4.1y, be those of SDSH then, from eg. (3),
Ai=pi+ O Pe1,.,Me1 (6)
If y,-..Qm, are the eigenvectors of R, the (M+1 -L) eigenvectors corresponding to the smallest
eigenvalues of R are given by:
Rgi = 0°q; 7
or, equivaltently
(R-c’ligj=0 o)

where i = L+1, .., M+1. It can be shown that the subspaces spanned by the sigenvectors g,..,q_ and
TGy 810 the orthogonal complements of each other. The first subspace is lnown as the noise
subspace. It corresponds o the (M+1-L) smallest sigenvalues of R. These are ideally equal to zero
since the L sinusoids have distinct frequencies and therefore the L columns of S are linearly
independent. The second subspace is called the signal plus noise subspace and corresponds to the L
largest eigenvalues of R. MUSIC can be used in ASl to identify those features present in spectral
patterns which most facilitate the pattemns’ separation by solving an eigenvalue problem.

RESULTS
Automatic Speaker Identification

ASi resuits obtaired for ILS and the ANN are illustrated in Tables 1 and 2 respectively. The mean
percentage of correctly recognised speech frames for ILS, given one hundred test frames, was 60.
The lowest ASI score was 31 (iwice). The mean percentage of correctly recognised speech frames
for the ANN, given one hundred test frames, was 53. The lowest ASI score was 33. ILS was able to
classify frames with 7 percent more accuracy on average than the ANN. Despite this, the ANN's ASI
threshold at 33% (lowest AS! score found over the speaker population) was 2% higher than for ILS.

Table 2. S performance for the Functional-link ANN
Table 1. S performance for the ILS system and twanty epeakers and ?wsn(y?ss?saks:s @ Functiona-in
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inspection of Tables 1 and 2 reveals that intra-speaker asymmetry, as defined by eq. (2), was
significant for both 1LS and ANN results. Some of this asymmetry was particular to one AS! method
and not the other. This is reflected in the results for speaker T given ILS and speaker Q given the
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ANN. A composite matrix shown in Table 3 was deduced from the above two tables by applying
eq.(1). Finally intra-speaker asymmelry was measured for each speaker by applying eq. (2) to the
resulis of Table 3 to obtain Table 4 These tables indicate significant asymmetry for speakers E, H, K,
M, P and R.

Table 3. Composite results (ILS and ANN)
6akeIs
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) T 5 s Lo Table 4. Intra-speaker asymmeiry for iwenty speakers
(] 1 93
& e 218 pogker 1AIBICIDIRIEIGIH] 1] [XIL|MINIOIPIQIRISIT
L] e T 153)  Peymmstd 3] 27{45147] 5614 [31] 89} 46 a0 1afa3] vof s dol 5413 | 2] 00 2]

Orthogonalisation of feature sets

The MUSIC algorithm was applied in tumn to each speaker's frame. A vector of 15 eigenvalues,
corresponding to the speech frame size, was deduced from eq. (8), for each speaker. This sigen-
spectrum is shown in Fig. 1. The signal plus noise subspacs corresponds to eigenvalue numbers 1 o
11 inclusive. As expecied, in the noise subspacs (numbers 11 to 15 inclusive}, eigenvalues were
small { < 1.5). The signal plus noise subspace itself may be separated into two regions, on the basis
of eigenvalue magnitude. Eigenvalues are high for numbers 1 to 5 and for speakers H,K,M,R (and to
a lesser extent, P and E). Eigenvalues are low for the remaining speskers (although not as low as in
the noise subspacs).

2
2¥10

i

O: speakers E, H, K, M, Pand R

Eigenvalue /.
)

1 23 4 56 7 8 910111213 1415
Figenvalue number
Figure 1 . Eigen-spectrum for twenty speakers.

DISCUSSION

The composite matrix of Table 3 exhibits regions of both high symmetry and asymmetry as defined
by eq. (2). The symmetry may be explained in terms of the non-separable regions in oveilapping
patterns (Morgan and Scofield, 1991). This occurs when feature representations are shared by
several classes.

Asymmetry with respect to the diagonal in ASI confusion matrices is less well understood. An
examination of Table 4 and Fig. 1 indicates that those speakers for which ASl is highly asymmetrical
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are also those speakers for which eigenvalues are the highest in the signal plus noise subspace
(eigenvalue numbers 1 to 11). This is obvious for eigenvalues 2 fo 5 inclusive and is the case for
speakers E, H, K, M, P and R. Hence these speakers exhibit both the sharpest spectral features and
the greatest AS! asymmetry. |f spectral patterns have prominent features then the classifier makes
use of these features. If other pattems are without these features they are not mistaken for the first

USE O Tese iSalires.

patterns. Now, if a nondescript pattem is the reference then the classifier experiences difficulty
focussing on any single feature and is more likely to mistake another pattern for it.

It would be worth investigating whether asymmetry measurements or suitable transformations thereof
could be substiiuted for unavailable a priori probabiliies estimates in current probabilistic ASI
approaches.

CONCLUSION

Asymmetry in Automatic Speaker ldentification is expressed by some speakers being routinely
mistaken for others while the latter are rarely (if ever) mistaken for the former. While bias inherent o
computerised speaker identification technologies may play a part in this phenomenon & cannot fully
explain it.

This study has linked high eigenvalues in the signal plus noise part of the eigen-spectrum with
Speaker Identification asymmetry. K is believed that the prominent specitral festures 1o which those
eigenvalues correspond have a strong influence on the ASI discrimination process. Hence, if &
speaker's pattern exhibits prominent features then the ASI solving process will look for those features
so that i a pattern (belonging to ancther speaker) is without them it will not be retained. However, if
the reference is a relatively foatursless speech patiem, the AS! process will experience difficulty
finding a match. It seems that in this cass, many paftemns become candidates for selection and in
particular the better defined ones.

This study was aimed at shedding light intc a lesser studied aspact of ASL It remains to be
established how future AS! systems should be designed to cater for it.
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