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ABSTRACT - Recent work has applied wavelets to speech recognition and has shown
that the use of percepiual scaling of the wavelet set can reduce the number of coefficients
generated per feature vecior compared to standard log frequency scaling. This paper
examines the formulation and performance of four frequency scaling operations applied to
a wavelet set for the parameterisation of speech in a speech recognition system. Three
percepiually based frequency scales: two mel-frequency scales and a bark scale are com-
pared with standard log scaled wavelets.

Application to a multi-speaker E-set disgimination task shows that the piece-wise mel
scale provides a recognition accuracy of 67.5%, oulperforming the other perceptually
based scales slightly, and the standard wavelet log scale by nearly 7%6.

INTRODUCTION

Wavelets have been shown fo be useful front end processors for spesch recognition systems for
discriminative tasks. These speech recognition systems have been based on Hidden Markov Models
{(HMMs) (Favero and King, 1994) and neural networks (Favero and Gurgen, 1994; Kadambe and
Srinivasan, 1984; Szu et. al. 1992). The perceplually based mel-frequency scale has become the
standard parameterisation for HiiM-based speech recognition, and perceplually based frequency
scales have also been used with wavelsts to limit the number of coefficients that were presented 10 a
classifier {Favero and King, 1993; Faverc and Gurgen, 1994).

Perceptual scaling of wavelet sets is non-trivial because of the dependence on the mother wavelet. The
mother wavelet determines the number of wavelets required to parameterise a given signal, the number
of coefficients that are generated per second, and can determine where the wavelets are located in the
frequency domain. The modulated wavelets can be modified during scaling 1o create a wavelet set that
has an arbitrary frequency scale. Conirol of both the resolution of a wavelet (which determines the
bandwidth) and its frequency location are necessary conditions for achieving an arbitrary frequency
scaling of a wavelet set that has a sufficiently tight frame (Daubechies, 1992; Vetterli and Herley, 1992).

This paper reporis comparisons of four frequency scaling operations of wavelet sets for speech
racognition. The work outlines the procssses of generating wavelets that are perceptually scaled in the
frequency domain and shows how the scale (resolution) of a wavelet can be varied independently of its
centre frequency.

WAVELET THEORY

Wavelet theory is based on generating a set of filters by dilation and translation of a generating wavelet
(mother wavelet). The mother wavelet is usually a band-pass filter. All of the generated wavelets are
scaled versions of the “mother wavelet”. Increasing the scale of a wavelet will increase its ime duration,
reduce the bandwidth and shift the centre frequency to a lower frequency value. Decreasing the scale
does the opposite.

A set of wavelets is generated from any defined mother wavelet W(t) by:

1 t—b
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The wavelets are contracted (O<a < 1) or dilated (2> 1) and are moved over the signal to be analysed
by time step b. Contractions and dilations scale the frequency response of the generating wavelet to
produce a set of wavelets that span the desired frequency range. The generated set of wavelets can
be considered as a filter bank for speech analysis.

The continuous wavelet transform (CWT) performs the inner preduct (correlation) of a signal s(f) with
all scales and dilations of a mother wavelet. The CWT will produce a two dimensional output similar

to a spectrogram. The CWT is defined as (g > 0, bis real):
1 t—b
CWT (b, = —_fs(H¥(—)dr
(b.0) = =fsO¥ ()

The discrete wavelet transform (DWT) is the CWT sampled at a defined set of points. The DWT of a
sampled signal s(k) is given by (i, k are indexing integers):

DWT(d',d'n) = ;;W(f )
Ja' @

The scaling value is made discrete by / being discrete. The DWT computes data points an oclave
space apart on a dyadic grid if a = 2 since the scale values wouldbe -2, -1, 0,1, 2, 4. 8.... (A dyadic
grid has half of the number of data poinis at each successive lower octave (Daubechies, 1992; Rioul
and Vetterli, 1991). The value of a can be chosen such that more than one wavelet coefficient per
ociave is generated (voices of an octave). ¥ the initial generating wavelet is defined appropriately
then sub-octave resolution can be accommodated. This can be achieved by choosing:
1
a= 2(number0fVoices)
The sampled CWT (SCWT) is & variation of the DWT. This produces frame synchronous daia
{redundant at lower frequencies) but retains the features that are offered by the wavelet transform.
The sampled CWT is given by:
SCWT (d',n) = %;\y(k“"
i
a

al

)s (k)

The discrete values of a dstermine the frequency location and bandwidih of the generated wavelet.
A series of values for a can be chosen to represent an arbitrary frequency scale. But while the
wavelst set is perceptually spaced in the frequency domain, the bandwidths of the wavelets no
longer have cut-off frequencies that adequately cover the frequency range. Independent conirol of
the freguency location and the bandwidth of a wavelet (thus the frequency and time resolution) will
allow adequate coverage of the frequency domain of the signal to be analysed when an arbitrary
frequency spacing is desired.

This control is achieved using modulaied waveleis. The cenre frequency location is determined by
the modulation and the bandwidth by the envelope. The frequency modulation is modified in
accordance with the percepiual frequency scale. The bandwidih of the modulating envelope is
chosen {based on the cenire frequency of the surrounding wavelets) so that the wavelet setis a
sufficiently tight rame (covers the frequency domain adequately). Figure 1 shows how different
modulating envelopes affect the frequency resolution of the wavelets. Figure 1(a) shows two
wavelets with different frequency modulation but the same 10ms envelope. The two wavelets have a
cut-off frequency of 7dB. Figure 1(b) shows iwo wavelets with the same frequency modulation but the
envelope is twice as long. This has reduced the bandwidth by half and the spectrum is not covered
adequately between the wavelets.

The waveleis used throughout this paper are based on a modulated Hanning window. The Hanning
window is an easy {0 use wavelet since it has finite time duration. This allows easy computation of the
wavelet fransform. The Hanning window is 32 samples {4ms).
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Figure 1:The effect of different modulations and envelopes on frequency resolution. (a) the time
and frequency domain representations of an 10ms envelopea(b) 20ms modulated snvelope

The wavelet transform is performed with the SCWT. The SCWT generates 18 coefficients per
sample, every 2ms. The SCWT is modified to reduce computational effort. The modification requires
coefficients that lie on the dyadic grid to be copied to adjacent coefficients that lie off the dyadic grid.
Since these redundant coefficients were not calculated the computational effort is reduced by 43%.

FREQUENCY BAND SCALING OPERATIONS

The frequency band scaling operations that have been used are outlined below. Each of the
frequency scaling opsrations are evenly spaced {6 produce 18 wavelets in this experiment.

Log Scaling

The wavelet ransform produces a log spaced frequency scale. In this experiment the number of
voices per octave has been set to 3 and the number of ociaves to cover the frequency range has
been set to 6, thus a total of 18 wavelets. Although this number of wavelets is not sufficient io cover
the frequency range adequately, it is used for comparison with the percepiual scales. Table 1 shows
that the log scale has 12 wavelets below 10600Hz and 6 above. This will allow the log scale to
parameterise low frequencies bstter than high frequencies.

Me! Scaling

This frequency scale is that used by the Hidden Markov Modei Tooikit {Young, 1992). The frequency
scale is given by:

Mel(f) = 2595log (1 + %)

The 18 wavelets are evenly spaced over this scale. Table 1 shows the number of wavelets that this
produces in each of the three frequency bands. The scale is effectively linear below 1000Hz and
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logarithmic above 1000Hz. Below 1000Hz the modulating envelope is constant for all wavelets.
Piece-wise Me! Scaling

This frequency scaling was used in previous work (Favero and King, 1993,1994). This scale follows
that of the log scale above 1000Hz and is linear below 1000Hz. The number of voices per octave
above 1000Hz is 6 and there are 2 octaves producing 12 wavelets above 1000Hz. There are 6
evenly spaced wavelets below 1000Hz that have the same modulating envelope.

Bark Scaling
The bark scaling is that used by Hermanski (1890) and is given by:

f ;o2 05
Bark = 6log| =+ ((==) +1
N g(mo (500 +D )
This scale is very similar to that of the Mel scaling but with a slight shift in the location of the centre
frequencies of the wavelets.

Piece-Mel Mel Bark tog

High(2000-4000Hz) 6 6 5 3
Mid(1000-2000Hz) 6 4 5 3
Low(<1000Hz) 6 8 8 12

Table 1: Number of coefficients located in frequency ranges

EXPERIMENT

A discrimination task is chosen for the experiment based on the NIST Ti-46 word database. This
database contains 16 speakers and sach speaker repeats each word 26 times. Ten of the words are
uses for training and the 16 remaining are used for testing. The database is down-sampled to 8kHz.
The leading and trailing silence is removed from each utterance prior to performing the wavelet
transform.

We have chosen the “E-set” (b, ¢, d, 8, g, b, §, v, Z) because the difficully in discriminating the initial
consonant makes this a difficult speaker independent recognition task The b/, /d/, /jp/, and A/ are &
particulardy confusable subset of the E set. The plosive burst is of a short duration (if at ali). The
formants rise on the onset of veicing for the &/, /d/ and A/ but F2 falls to a stable level for /p/. The M/
often has a low intensity and hence can be cornfused as /c/, /e/ or /z/. The /¢/ and /g/ are high intensity
during the consonant and hence are easily discriminated.

The experiments described here use continuous density HMMs with 5 states and 5 weighted
Gaussian mixtures (Rabiner, 1989; Young, 1892).

DISCUSSION

Table 2 contains the recognition results for testing and training data for each of the frequency scaling
operations as a percentage commect score.

Piece-Mel el Bark Log
Training 78.4 77.8 78.6 79.1
Testing 67.5 65.6 65.0 60.9

Table 2: Recognition performance for each frequency scaling operaiion
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There is little difference in the effect of perceptual scaling on recognition performance. The log scale
performs poorly for this particular recognition task, although this is not surprising given that there are
so few wavelets located in the frequency region whers the discriminating information is located. The
training result for the leg scale highlights that despite a iraining process performing well, recognition
performance with unseen data requires an adequeate parameterisation.

The recognition resulis are consistent with the analysis in Table 1. There is a comespondence
betwesn the number of coefficients above 1000 Hz and the recognition performance. The Mel and
Bark scales have the similar recognition performarnce and this corresponds with the number of coeffi-
cients above 1000Hz. The piece-wise mel scals has the highest number of wavelets above 1000Hz
and the best performance. The log scale has the smallest number of wavelets above 1000Hz and the
poorest recognition performance.

The discriminative information is located at the beginning of each utterance where the plosive is
occurring and onto the coarticulation with the vowel. Given the plosives contain a significant high
frequency contertt, the resulis indicate that a frequency scaling operation that has a large number of
coefficients in the higher frequency range will provide better recognition performance.

Despite the constant Q analysis being lost through using an arbivary scaling operation, opporiunities
axist for determining wavelst scaling operations and wavelets thal maximise recognition
performance for a given task. Understanding the nature of the recognition task will aid in determining
which frequency scaling operation o use.

Future work will investigate scaling operations and wavslsts that can be used with recognition tasks
that have larger vocabularies. Kadambs (1894) points out that for a particular task with a lamge
vocabulary, different wavelets may be necessary to achieve the bast recognition performancs. This
would extend to the frequency scaling opsrations. This provides opporiunities to use wavelets
adaptively for a particular task and to control the number and resoluticn of each of the wavelets.
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