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ABSTRACT - Variability is an inherent characteristic of speech signals and its management
plays an important role in speech processing. This variability arises from many sources. In
this study, techniques are developed to explore the separation of speech signal variances
from two sources in the low-order cepstral space. Hidden Markov modelling and statistical
comparison of multi-variate distributions are used in a novel way to capiure local variance
in the midst of the normal dynamics of speech signals. Subsequent analysis demonsirates
differences between this local variance and the global variance which is often used o
characierise signai variance without reference io its significant components, and reveals
speaker characteristics which may not be observed by simply looking at the global variance
of speech data.

1. INTRODUCTION

The variance of speech signals encodes the information that is intrinsic to speech communication.
However the overall variance has contributions from many sources which are mingled together in ways
that are not easy 1o disentangle. Measures of speech variance are important in characterising specific
speech sounds or the speech of specific speakers. Accurate assessment of such measures should
enable improved performance of speech and speaker recognition systems. In both of these domains
the Mahalanobis distance between a testing vector and a reference vector is regularly used 1o replace a
simple Euclidean distance if the elements of such vectors have widely difierent variances and significant
inter-dimensional correlations in the vector space. This has been argued for speaker recognition many
years ago by Atal (1976).

Three studies on the extensively used “cepstral” space have calculated cepstral variances based on
(a) a wide range of sounds {rom several speakers (Juang et al., 1987), (b) a single word from a large
range of speakers (Tohkura, 1987), and (c) some isolated and connected words repeated several limes
by individual speakers (Soong et al., 1988). Such measures contain several sources of variance which
may be characterised as follows: type (a) includes inter-speaker variance, intra-speaker variance, and
phonetic variance; type (b) includes inter-speaker variance and phonetic variance; and type (¢) includes
intra-speaker variance and phonetic variance. Additional sources of variance are also always present
such as that due fo the recording environment, but these may be regarded as secondary for our present
purpose.

In VQ-based text-independent speaker recognition systems, global variances derived from training data
from individual speakers are sometimes used in Mahalanobis distance calculations for each codeword
(e.g9. Soong et al, 1988). This global variance clearly contains components of both intra-speaker
variance and phonetic variance. If (to a first order approximation) a codeword can be regarded as
representing a particular phonetic state and variances of the codeword as representing infra-speaker
variance for that state, it seems less than optimum to uss the global variance in place of intra-speaker
variance for that state when computing deviation from the VQ-based speaker mods!.

In this study, we develop techniques to enable the separation of variance that is essentially of phonetic
origin and that which is essentially the variance of speaker performance in attaining phonetic goais.
The only form of intra-speaker variance considered is that associated with repetition of the same
word on different occasions (assuming normal physiological and emotional states); we refer to this as
intra-speaker repetition variance hereafter. Consequently this separation enables us to demonstrate
differences between intra-speaker repetition variance and global variance which is derived from speech
data comprising repetitions of the same word. This separation can also reveal some phenomena which
may not be observed by simply looking at globat variance of speech data.

2. SPEECH MATERIAL AND ANALYSIS
Four English monosyllabic words we, you, how and high were selected for this study. The phonetic
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variance in these words traverses the vowel space in all its dimensions: characterised by tongue
body movement in articulatory domain and by the dynamics of acoustic representations in the acoustic
domain. This data corpus was designed to be spoken 32 times by 11 Australian male speakers in 4
recording sessions, with a target time interval between sessions of 1 week and with each word being
spoken 8 times in each session by each speaker. In the course of data collection, several speakers
selected were not able to attend on schedule. As a result, minimum and maximum time intervais
between successive sessions were respectively i day and 12 days, with an average time interval
between successive sessions of 6.5 days. Occasional speaking efrors made by two speakers meant
that they had less than 32 correct utierances for some words - speaker IM has 31 for high, and speaker
JW has 31 for we, and 30 for both you and high. These deviations from the original design are relatively
minor and should not affect the overall results.

The data were originally sampled at 20000 samples/s, and then down sampled to 10000 samples/s.
The vocalic parts of the recorded utterances were manually identified for this study. Each utterance was
reduced to a sequence of vectors, each comprising 12 low-order cepstral coefficients, by LPC analysis
of frames of 20ms width with 50% overiap.

3. METHODS

In this study, we want to separate intra-speaker repetition variance and phonetic variance for each given
word on a per-speaker basis. For this purpose, we need to model each word in such a way that the
word's acoustic variance attriutable to its phonetic characteristics and that attributable to inira-speaker
repetition are separately manifested. We have explored the use of hidden Markov modelling, which is
an example of stochastic technigues for the study of nonstationary processes (Poritz, 1988), for this
purpose. In a hidden Markov model, the sequence of states describes temporal properties, while the
probability distribution in each state characterises the statistics of the associated time interval.

In this study, the trajectory of LPC based cepstrals for a given word/speaker combination is represented
as a sequence of states. Each state is assumed to correspond to one of the sequence of vocal tract
configurations {or phonetic states) used in the production of that word, the acoustic properties of which
are characterised by the state’s internal probability distribution.

Hidden Markov modelling is a procedure to estimaie the model parameters based on observation
sequences. It comprises three primary parts: (1) 2 model and its structure; (2) a criterion for estimation;
and (3) an algorithm io implement the procedure. These three parts are described in 3.1, 3.2 and 3.3
below.

3.1 The model and its structure
A hidden Markov model can be summarised by its parameters ) = (ag, 4, B), where

o A={a;,i,j=1,..N}is the state transition probability matrix,

© aq is the initial state probability distribution,

o B={b,i=1,..N}are output probability distributions in each state i,
o N is the number of states in a model.

We select a left-to-right with no skips structure (Figure 1) as we are interested in modelling the sequential
dynamics of each word by the state sequence. This structure has the property that as time increases
the state index either increases sequentially or siays the same. When used to model a given word, each
state can be assumed to represent the articulatory configuration or phonetic state at the associated
time, and 1o describe the corresponding acoustic properties by its output distribution.

all a22 a33 add
al2 a23 a34
@)«

Figure 1: Structure of a 4 state left-right hidden Markov model

The self-transition probability a;; conveys information about the duration of state i although in this
architecture it does not model duration accurately. As we are interested only in the statistical properties
of each state, all non-zero values in the transition probability matrix were made equal. Due to the
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mathematical constraint that the sum of transition probabilities from any state should be unity, we set all
values to 0.5 so that (apart from the last state) the constraint is obeyed.

Taken together, the above considerations result in a state transition probability matrix of the following
form, with N = 4 for example:
/08 05 00 00\

00 05 05 00 |

0.0 00 05 05

00 00 00 05

A=

The initial state probability distribution of 0.5 for state one and state two allows an equal chance of
starting in either state.

The output distribution for each state is assumed to follow a multivariate Gaussian distribution. Hence the
variance within a state, in the form of the covariance matrix of this muitivariate Gaussian, can be regarded
as representing intra-speaker repetition variance of the acoustic properties of the corresponding vocal
tract configuration or phonetic state.

A novel method for the selection of the number of states required to model a specific word by a specific
speaker involves an iterative statistical comparison of the output distribution of adjacent states on trial
models. We set a criterion o test statistically inter-state relationships prior to acceptance of an optimal
model with a particular number of states. The same criterion is applied to models for all words and
speakers. This may result in different numbers of states where different dynamic characteristics exist.

The iterative procedure is as follows:
o Step 1: Start with the number of states N = 2.

e Step 2: Make model estimations of maximum joint likelihood in P{O, s|) with N states using the
segmental K-means algorithm.

o Step 3: Test the hypothesis that there is a pair of adjacent states whose mean vectors are no longer
unequal at a significance level a, using Hotelling’s T-square test. if the hypothesis is accepted, go 1o
Step 5.

o Step 4: Increase N by 1, go to Step 2.
e Step 5: The final number of states for the model is N - 1.

This procedure increases the number of states until at the significance level « we can still say that
any two adjacent states have output distributions representing separate distributions. If this level of
significance is weak (large value of a) then the procedure generates a large value of N. The selection of
« determines to a first approximation the acoustic difference which we adopt as our quantum of acoustic
phonetic change. If this quantum is large (smali N) then acoustic dynamics will more strongly influence
measures of intra-speaker variance internal to each of the N states. In theory, when the number of
states in a model increases, the values of T-square in Hotelling's T-square test for all pairs of adjacent
states decrease. The T-square value statistically represents the distance between two adjacent states.
in practice, the values of T-square for all pairs of adjacent states do not at the same time fall below
the threshold determined by the degrees of freedom (number of datapoints, dimension of variables) and
significance level (o) when the number of states increases. We stop increasing the number of states as
soon as we find (as in step 3 above) that there is one pair of adjacent states having no difference at
level of significance «. In the initial study reported here a value of o« = 0.01 was chosen.

3.2 The criterion for estimation

In general hidden Markov modelling, given the observation sequence O, the model parameters ) are
adjusted to maximize P(O[}) = 3~ . s P(O,s|)). This means that ) is chosen in order to maximize the
sum of probabilities for all possible state sequences S that O might have,

An alternative criterion, which better suits our application, is to maximize the joint likelihood P(O, s,,|\) =
maz.es P(O, s|A). This means that X is chosen to maximize the likelihood of the state sequence s,, for
0, where s, is the most likely among all possible state sequences S.

In our study, given an observation sequence O of a word, we are interested in a particular state
sequence s of O, which can correspond to the sequence of phonetic states assumed to characterise
that word. Therefore, we select maximum joint likelihood maz PO, s|)) as the criterion for estimation of
model parameters A.
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3.3 The algorithm

The development of a particular algorithm for the estimation of model parameters arises from the
interaction of the selection of the estimation criterion and the model type.

The Baum-Welch algorithm (Rabiner, 1989) is appropriate for estimation of hidden Markov model
parameters A in the sense of maximum likefihood P(O|)). Inour study, because the criterion function is
mazP(O, 5|\, we use the segmental K-means algorithm (Rabiner et al., 1985) 1o estimate A.

Since the initial probability distribution ¢, and the state transition probability matrix A have been fixed,
the segmental K-means aigorithm is used to estimate parameters of the output distribution, in terms of
the mean vector and covariance matrix of the mutltivariate Gaussian distribution, for each state.

The segmental k-means algorithm repeatedly uses the Viterbi algorithm (Forney, 1973) to segment each
observation sequence of a word into states and to make a maximum likelihood estimation of the mean
vector and covariance matrix for each state based on the observations segmented, from all observation
sequences, into that state, until the criterion function converges.

As the segmental K-means algorithm is itself an iterative estimation procedure, the initial model is
significant for the convergence to the final estimated medel. The initial mode! is usually (Rabiner,
1989; Hidden Markov Mode! Toolkit V1.5, 1993) created from a uniform segmentation in time of each
observation sequence into states.

In this study, we developed a novel method for forming the initial model based on segmentation of
observation sequences according to their dynamic properties. it involved three steps:

o Step 1: the sum of Euclidean distances between each pair of adjacent observations {frames) from an
observation sequence is computed;

s Step 2: given the number of states N, a threshold is chosen by dividing this sum by N; and

o Step 3: starting with the first observation of the sequence, we accurnulate Euclidean distances for each
successive pair of adjacent observations until the sum reaches the chosen threshold. All observations
before this point (when the sum of Euclidean distances exceeds the threshold), are allocated to state
number one. This precedure is restarted and continued until all observations have been exarined and
allocated to a corresponding state.

I the characteristics of the observation sequence change in a linear fashion (i.e. the dynamics are
linear), the method described above resulis in a uniform segmentation in time. However, in realily, the
dynamics are normally non-linear. initial models derived using this method should be closer to the final
converged models used for this study than those obtained via uniform segmentation in time.

4. RESULTS

A total of 44 left-to-right hidden Markov models were trained using the methods described above. As
can be seen in Table 1, the number of states varies from speaker to speaker and from word to word.
Together with the mean vector for each state, this reflects the differing degrees of acoustic realisation
of phonetic variance in ali these speaker/word pairs. Relatively greater spectral variation of the speech
signal of a word resufts in bigger number of staies in the model.

The pooled covariance over all states in a model was computed. This measure of covariance for each
speaker/word pair provides a better measure of the intra-speaker repetition variance than the global
variance calculated across all frames of the raw cepstral analysis vectors. In the pooled intra-state
variance measure the majority of the phonetic variance expressed in the dynamics of the acoustic
pattern over time has been accounted for by the variance between states and the number of states
required.

Table 2 shows the proportion of the global variance derived by summing the diagonal elements of
the pooled covariance matrix, expressed as a percentage and labelled as true intra-speaker repetition
variance. For the speech corpus used in our study and using a quantum of acoustic phonetic dynamics
defined by « = 0.01 as described above, it can be seen that the true intra-speaker repetition variance is
in nearly every case less that half of the global variance and in quite a number of cases is of the order
of a guarter of the global variance.

Figure 2 shows the global variance and intra-speaker repetition variance per cepstral dimension for
each word spoken by speaker AH. The upper plot in each case is the global variance. There are distinct
differences in curve shapes of global variance across 4 words and distinct differences in curve shape
between intra-speaker repetition variance and global variance of each word. This indicates that in our

258



Percentage of inira-speaker
speaker number of states speaker | repetition variance present
in the global variance (%)
we you how high we you  how high
AH 20 15 15 14 AH 30.7 383 517 514
BM 1 i5 15 15 BM 215 333 448 383
DD 2 20 17 20 [3]9} 265 28.0 418 394
GC i7 17 15 16 GC 254 492 375 512
1M 20 21 15 16 1M 224 372 394 250
JW_  [16 14 12 14 JW 26.9 387 440 387
KR 1% 17 20 18 KR 218 360 270 235
NF i8 18 13 15 NF 178 265 492 335
SB 5 15 18 12 SB 277 39.6 454 471
hi=] 14 15 18 1 ™ 2%9.8 322 451 325
WB 16 13 13 16 w8 229 278 485 425
Table 1 Table 2

study, phonetic variance, to certain extent, dominates the global variance in qualitative aspects as well.
The limited data corpus of this study did not permit comparison with the shape of global variance over
phonetically balanced material which is commonly used to represent intra-speaker variance in speech

technology systems.

025 T H T H T T ¥ T T T 014 [ T 1 T T T T T T H T i
0.2 0.12 you by AH —
0.1
0.15 0.08
0.1 0.06
0.04
0.05 002 -
0 J. 1. 1 0 i i i | 1
123456789 101112 12345678 9101112
014_ T T T T Ih[ l; AHI T _ 0003 L T T T T lh.|hll) IAHI T i
012k owby Al — | 0.08 | gh by AR =
01} -
0.08 4
0.06 L .
0.04 F -
0.02 _X .
0 1 1 i ] I 1 1 1

123 45 67 8 9101112

Figure 2: The global variance and intra-speaker repetition variance for each LPC cepstral coefficient for
the 4 words by speaker AH.

Qur modelling work aiso reveals a fact that some speakers have relatively greater dynamics but less
intra-speaker variance, while others have relatively less dynamics but greater intra-speaker variance.
Figure 3 gives an example of this. Because speaker KR has greater dynamic range for howthan speaker
AH, his model has a larger number of states {20) than AH'’s (15). This suggests that KR pronounces
how more consistently than AH even though his global variance is higher. This phenomenon can not be
observed if we simply look at the global variance or models with the same and very smail number of

states.
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Figure 3: The global variance and intra-speaker repetition variance for each of LPC cepstral coefficient
for word how by speaker AH and KR.

5. CONCLUSIONS

We have developed techniques, based on hidden Markov modelling using an iteratively designed
architecture, to model given word/speaker combinations. Both intra-speaker repetition variance and the
characteristics of the acoustic realisation of phonetic variance have been demonstrated in the output of
the model.

The techniques described in this paper can be applied to assess quantitatively the relative contributions
to global variance from phonetic sources that are essential in creating a phonemic sequence, and
trom other speaker specific sources such as repetition variance but also physiological, psychelogical,
and environmental influences. It should therefore be possible to provide an analysis of a repeated
performance of a given phonemic sequence in terms of the phonetic dynamism applied and the other
intra-speaker variants involved.

Our siudy also suggests that the incorporation of variance in VQ-based text-independent speaker
recognition systems may benefit from the incorporation of codeword-dependent measures of variance
rather than global variance which includes the phonetic variance across the whole analysis space.
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