ATREUS: CONTINUOUS SPEECH RECOGNITION SYSTEMS AT ATR INTERPRETING
TELEPHONY RESEARCH LABORATORIES

S. Sagayama, M. Sugiyama, K. Ohkura, J. Takami, A. Nagai, H. Singer, H. Hattori(t),
K. Fukuzawa, Y.Kato, K. Yamaguchi, T. Kosaka, and A. Kurematsu

ATR Interpreting Telephony Research Laboratories

ABSTRACT — This paper describes ATREUS, a family of a large variety of continuous
speech recognition systems developed at ATR Interpreting Telephony Research Laborato-
ries as the spoken input front-end of an interpreting telephony system. It is one of the major
achievements of a seven-year automatic interpreting telephony project, which will reach its
completion at the end of this fiscal year. A comparative study is given from the viewpoints of
constituent technique and performance. A combination called ATREUS/SSS-LR performed
best among the ATREUS systems.

INTRODUCTION

ATREUS, a family of continuous speech recognition systems, has been developed in an intensive effort
to improve speech recognition performance at ATR Interpreting Telephony Research Laboratories in its
seven-year interpreting telephony research project, which was initiated in 1986 and will be completed at
the end of the fiscal year 1992. Speech recognition has been extensively explored as one of the three
major constituent technologies for speech transtation, namely, continuous speech recognition, language
translation, and speech synthesis. The purpose of this paper is to summarize our research results in
continuous speech recognition and to present a comparative study of structures, constituent technigues,
hardware implementations, and performances.

ACOUSTIC MODELS (1) — PROBABILISTIC MODELS

ATREUS places particular emphasis on probabilistic approaches for acoustic modeling of speech. A
number of acoustic models have been investigated based on HMM. The acoustic parameters are mostly
LPC-based cepstral coefficients. Three of the models are as follows:
1. Multiple-codebook Fuzzy VQ-based HMM (FVQHMM) (Hanazawa et al. 1990)
This model is based on fuzzy vector quantization and multiple codebooks. Acoustic parameters,
LPC cepstrum, delta-LPC ceptrum, and delta-power, are separately vector-quantized by using
three separate VQ codebooks. Coding is “fuzzy” instead of “hard” decision-type vector quanti-
zation to reduce quantization error. This helps overcome the training problem due to sufficient
training data being often difficult to obtain. In the early stages of our project, this type of discrete
HMM was extensively studied. Eventually, these models were gradually replaced by continuous
density HMMs.
2. Continuous Mixture Output Probability Density HMM (CMHMM) (Yamaguchi et al. 1992)
This is one of the popular models among speech researchers. This is regarded as a reference for
comparison with other models. In our models, the number of mixtures are adaptive to the number
of available training samples (Kosaka 1992b). The average number is 11.
3. Hidden Markov Network (HMnet) (Takami et al. 1992a)
This is one our project’s major achievements. Hidden Markov network (HMnet) is a highly gen-
eralized form of HMM, which incorporates context-dependent variations of phones and state shar-
ing among different allophones. A HMnet contains a finite number of states, each containing a
single Gaussian distribution, that are connected to each other to form paths representing context-
dependent phones. This network is automatically derived using the Successive State Splitting
(8SS) algorithm, which simultaneously solves three problems: network topology, allophone clus-
ters, and the acoustic distribution of each state. The outline of the SSS algorithm is shown in
Fig.1.
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Figure 1: Qutline of Successive State Splitting (SSS) algorithm for context-dependent phone modeling

ACOUSTIC MODELS (2) — NEURAL NETWORKS

Neural network approaches have been intensively investigated as alternatives to the probabilistic ap-
proaches.
Considerable effort has been paid for improving the “robustness” across differences in speaking styles
(e.g., word utterance vs. phrase utterance). Neural fuzzy training, PD-TDNN, neighbor integration, and
KNIT (k-nearest neighbor interpolative training) are examples of such attempts.
1. Time-delay Neural Network (TDNN) (Waibel et al. 1989)
Time-Delay Neural Netwoork {TDNN} is a four-layer perceptron-type neural network which has a
special tied-link structure for time-shift capability.
2. Pairwise-Discriminant TDNN (PD-TDNN) (Takami etal. 1991)
PD-TDNN is a TDNN-based network that consists of pairwise discriminant TDNN trained with three
reference values, 0, 0.5, and 1, for all possible phoneme pairs integrated to make a majority deci-
sion.
3. Neurai~Fuzzy Trained TDNN (Komori 1992)
instead of 0 and 1 in the standard TDNN, TDNNs are trained with fuzzy reference levels between
0 and 1 near the phoneme boundaries.
4. Fuzzy Partition Model (FPM) for Phone Modeling (Kato et al. 1992)
FPM is another neural network architecture based on a probabilistic formulation. Each unit has
multiple positive outputs whose sum is unity, uniike the conventional perceptron-type neural net-
warks. This type proved superior to TDNN-based approaches both in training speed and in speech
recognition performance.

SPEAKER-ADAPTATIVE/INDEPENDENT SPEECH RECOGNITION

ATREUS includes speaker-dependent, speaker-adaptative, and speaker-independent modes. The tech-
niques for speaker adaptation are:

1. Codebook Mapping (CBM) (Shikano et al. 1986, Nakamura et al. 1989)
if a pair of utterances of the same word by different speakers are provided, vector quantization
codebooks for both speakers are designed independently from them. Using dynamic time warping,
these utterances are aligned to each other to obtain a cross-histogram matrix that associates the
pair of codebocoks with each other.

2. Vector Field Smoothing (VFS) for discrete HMMs (Hattori et al. 1992)

Vector Field Smoothing (VFS) is a principle for speaker adaptation which assumes that the differ-
ence between the reference and the new speakers can be modeled as a vector field in the feature
vector space. In the discrete case, the VQ codebook of the reference speaker is transferred ac-
cording to the vector field. The outline is shown in Fig. 2.

3. Vector Field Smoothing (VFS) for continuous HMMs (Ohkura et al. 1992, Takami et al. 1992b)
VFS can be considered a principle for training phone models that uses a limited amount of training
data along with its phonetic transcription where the set of phone models of a reference speaker is
aiready trained with a large amount of data. In the continuous HMM and HMnet cases, continuous
distributions are modified according to the smoothed transfer vector field between the mean vectors
of HMMs before and after Baum-Welch embedded training with the given transcribed speech data.
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Figure 2: Outline of Vector Field Smoothing (VFS) for speaker adaptation

4. Speaker-tied training (Kosaka et al. 1992a)

Even one word utterance training improves the performance in speaker-tied training for a speaker
mixture speaker-independent HMnet.

5. Segmental Speaker Mapping using Neural Network (Fukuzawa et al. 1992)

A neural network is used to define a segment-to-segment mapping from the input speaker to the
reference speaker. It is connected to a standard TDNN phone verifier.
Speaker-independent speech recognition approaches are also investigated. They are:

1. Fuzzy Vector Quantization HMM as the baseline system
A speaker-independent speech recognition system based on fuzzy vector quantization HMM has
been developed as the baseline system for comparison.

2. Continuous mixture HMM (Kosaka et al. 1992a)

In continuous output mixture density HMMs, the number of mixture components are adjusted by
the “variance uniformty” principle (Kosaka et al. 1992a) for representation of speaker-independent
phone models. :

8. Speaker-mixture HMnet (Kosaka et al. 1992b) ]
Speaker mixture is a context-dependent, speaker-independent hidden Markov network that is
composed of speaker-dependent HMnets each derived from the SSS algorithm. This has attained
the highest performance among our speaker-independent models.

4. Speaker-independent trained FPM (Kato et al. 1992b)

FPM also performs well in the speaker-independent mode if trained with multiple speaker data.

LANGUAGE MODELS

Language models are also investigated from three different approaches, namely, syntactic, stochastic,
and their combination. Some of them are:
1. Generalized LR Parser

A generalized LR parser (Tomita 1987) is extensively used in combination with various acoustic
models. The grammar is written in a context-free grammar style and used in the LR parser which
is combined with both HMM- and neural network-based phone models (Kita et al. 1990, Nagai et
al. 1992, Sawai 1990). The parsing process consists of LR table lock-up, phoneme verification,
and hypotheses pruning. Two of its major advantages are that it can obtain multiple recognition
hypotheses as the result and that explicit phoneme duration control is possible. An outline of LR
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Figure 3: HMM-LR continuous speech recognition

parsing for speech recognition is illustrated in Fig. 3.
2. Stochastic grammar approaches
Bigram and other statistical approaches to language modeling are investigated and combined with
phone models, although they are not treated here.
The combination of fuzzy VQ HMM and the LR parser has already been successfully implemented on a
devoted hardware consisting of 33 DSP chips. This system is capable of 1,000-word vocabulary real-time
continuous speech recognition.

SYSTEM PERFORMANCES

ATREUS, a family of various combinations of the above mentioned components, has been evaluated
for Japanese Bunsetsu (phrase) speech recognition in a task domain of “international conference regis-
tration.” This domain contains an approximately 1,500 word vocabulary and phoneme perplexity of 5.9
{equivalent word perplexity of over 100). The recognition rates are shown in Fig. 4.

CONCLUSION

Among the ATREUS family systems, SSS-LR continuous speech recognition provided the best per-
formance in both speaker-dependent and speaker-adaptive modes. In the speaker-independent mode,
speaker mixture HMnet performed better than the other methods. These were all based on phoneme-
context dependent phone models combined with a phoneme-context-dependent LR parser.
Eventhough the performances did not exceed the best performance of HMM, neural network approaches
have shown high potential. Future works will include the combination of neural networks and HMM
approaches.
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Figure 4: Summary of Speaker-dependent, adaptive, and independent phrase speech recognition perfor-
mances. ( Black and gray bars represent recognition rates for the first candidate and for five candidates.
The task domain is international conference registration with phoneme perplexity 5.9. W, IW, and Ph
stands for words, isolated words, and phrase utterances, respectively, used for training. **’ means “with
phoneme duration control”. ) 398
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