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ABSTRACT - This paper describes the results of some experiments in the development
and application of low cost neural networks for isolated speech recognition. Emphasis is
placed on low precision weights and low memory requirements, which facilitate, in
particular, the use of simple microprocessors for implementation.

INTRODUCTION

The development of practical, low cost devices for spoken language understanding has recently
become one of the main aims of researchers associated with speech related industries. A wide range
of applications are at stake, such as telephones with voice activated dialling, aids for handicapped
people and a variety of cost efficient, user-friendly, telephone-based information services. In some
applications the cost of such devices have to be minimal (e.g. < $5 for digit recognition in a basic
telephone set).

This paper outlines a number of recent experimenis conducted at Telecom Research Laboratories in
the development of low-cost, spoken language understanding devices. For cost efficiency the speech
recognition is based on a bank of frequency filters followed by a set of quantisers (thresholds) and
simple artificial neural networks (ANN), mask percepirons, for signal classification. Such ANNs are
very simple to implement: the only operations required are logical “AND", comparison and addition of
small integers. Experiments have shown that such networks require a small number of synaptic
weights of very low precision (4-6 bits), hence have low memory requirements and could be
implemented on a low-power, low-cost microprocessor or a dedicated logic-based system with a small
amount of memory. Note that the memory is the main cost of such a system.

NEURAL NETWORK DESCRIPTION

Two basic architecture of neural networks used for the experiments are shown in Figure 1. The main
part, the mask perceptron (Kowalczyk, Ferra & Jenkins, 1990, Kowalczyk & Ferra, to appear), consists
of three layers:

< a layer of “input quantisers” (IQ’s) converting the continuous outputs of frequency filters to a
string of bits, xy, Xa,..., Xp,

= a hidden layer of logical conjunction units (higher order monomials, x;;x;z - X, and

- the output fayer connected via links with real weights, wjgy,...,jx), 10 some units of the previous two
layers for the purpose of “normal summation” of the weighted activation of these finked units.

A final processing stage is added on top of the mask perceptron in one of two ways. In the first case
shown in Figure 1a, known as distributed encoding, each input pattern is assigned 15 non-trivial
entries of a row from a 16x16 Hadamard matrix (digit recognition experiments only). These patterns of
+1's have maximal Hamming distance between each other, so that for two instances to be confused at
least one of them must lead a number of errors. The distributed encoding of the output units, if
implemented, requires a final stage appearing as a “Hamming net” as well as a prior “squashing” level
for which we used a ramp non-finearity f{f) = sgn(f) for [ff >1 and ) = tfor [ < 1. The "Hamming net” is
used to calculate the cross-correlation of the threshold-modified perceptron resuits with the ideal code
patterns, designated by the Hadamard matrix, for each word. The weights between “squashing” and
“correlation” units in Figure 1 are equal to £1 corresponding to the designated distributed patterns.

in the second case, shown in Figure 1b, we have a network with so called centralized encoding. In this
case the number of mask perceptron output units is equal to the number of words, with each output
unit ideally assigned 1 for the word to which it corresponds and -1 for all others, and the Hamming
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Figure 1. (a) Mask perceptron structure with distributed encoding and (b) mask perceptron
structure with centralized encoding.

network layer is omitted. These networks are much smaller than the previously discussed, but in
general less accurate.

Regardiess of whether centralized or distributed encoding is used we employed a “MAX-selection” in
the final stage in order to determine the final output of the network.

DIGIT RECOGNITION EXPERIMENTS.

We conducted a series of experiments in the recognition of 10 isolated spoken digits, which is a
standard benchmark task in the speech recognition area. We used mask perceptrons with distributed
encoding (c.f. Fig. 1. a) in these experiments. The generated mask perceptrons were subsequently
pruned and had simplified synaptic weights in order to reduce the demand on storage memory (c.f.
Kowalczyk at al. (1991) and Kowalczyk & Ferra (o appear) for details of the training routine). The
results are as follows.

(i) Mutti-iingual experiment

A neural network was trained for the recognition of 10 isolated digits spoken by 4 speakers in 4
different languages. Each of the training and independent testing data sets consisted of 800 instances
(200 for each speaker). All instances consisted of 221 positive numbers representing the energies of
16 filters over 12 time windows, 16 sums for each filter, 12 sums for each time window and the total
energy (c.f. Fig. 1a.).

The accuracies of obtained perceptrons with different weight resolution are shown in Figure 2.b
(marked by (i)). In particular, a mask perceptron, using 6 bit precision of weights achieved the
accuracy of 96% in test and required only 4k of mermory to store (c.f. “A”in Figs. 2.a and 2.b)

(ii) A multiple speaker experiment

A neural network was trained for the recognition of 10 isolated digits spoken by 6 speakers in English.
Each of the training and independent testing data sets consisted of 1,200 instances (200 for each
speaker). All instances consisted of 231 positive numbers representing the energies of 20 filters over
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10 time windows and 20 sums of energies for each filter, 10 sums for each time window and the total
energy.

The results, marked by (i}, are shown in Fig. 2.b. In particular, the simplified mask perceptron using 5
bit precision weights and requiring 1.7k of memory to store, achieved an accuracy of 98% in the test
(cf. “B” in Figs. 2.a and 2.b); we observed here no significant decrease in recognition accuracy in
comparison to 24 bit precision. With better signal processing, we would expect an improvement in
recoghition accuracy. This network was subsequently simulated on a PC and used in microphone-
based tests for five new speakers. These speakers were able to easily adapt their pronunciation to the
network requirements and hence improve the recognition accuracy from an initial 75% 10 95%.

(iii) A single speaker experiment.

A neural network was trained for thie recognition of 10 isolated digiis spoken in English. Each of the
training and testing data sets consisted of 200 instances and are composed of the constituents of
part (ii).

The results, marked by (iii), are shown in Fig. 2. In this case, the simplified mask perceptron using 4 bit
precision weights and requiring only 288 bytes of memory to store, was achieving an accuracy of
99.5% in the test (c.f. “C” in Figs. 2.a and 2.b). Analogously, for 5 bit precision we needed 330 bytes of
memory and the network achieved 100% accuracy.

Network Exper. Fan-in |No.Bits Memory Accuracy [No.Bits  Memory Accuracy (@)
A i 298 24 14k 95.7% 6 4k 96.0%
B i 261 24 12k 98.2% 5 1.7k 98.0%
C i 32 24 1.5k 100.0% 4 028k 99.5%

13‘2) ) Figure 2. (a) Comparison between

selected networks with the full and
restricted precision of synaptic weights in
the digit recognition experiments: (i) muiti-
lingual, (iiy multiple speaker and (iii) single
speaker. “Fan-in" refers to the number of
connections to output units of the mask
perceptron {marked yjy,...y, in Fig. 1).
“Memory” means the memory required to
store the network in simulation on a
micro-processor.
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GROUCHO - A SPOKEN DIALOGUE INTERACTION SYSTEM

This ANN approach was used to construct an information retrieval system, nicknamed Groucho, that
understands simple man-machine spoken dialogues over the public switched telephone network (c.f.
Fig 3). The dialogue was based on a system trained for multiple speakers, with the aim of recognizing
17 isolated words, spoken by a user in response to questions asked by the machine. Questions are
asked one at a time and a list of words representing the choices are “spoken” to the caller. The output
of the speech recognising ANN is passed to the dialogue manager, which in turn initiates the
appropriate audio response to the user.

An important aspect of how the neural networks are used in Groucho is the use of a simple dialogue
grammar. Certain types of dialogues can be readily modelled as a sequence of interactional stages.
An information-seeking dialogue between a caller and the computer can be modelled as an
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Figure 3.Groucho system: implementation schematic (a) and dialogue grammar (b).

introduction to the service, statement of an information-seeking goal, negotiation of specific query
details, presentation of information retrieved, check on query satisfaction, and dialogue closure. On
top of these siages can be various sub-dialogues to clarify service possibilities, query details and
query satisfaction (Rowles et al. 92 this volume).

The dialogue grammar used in Groucho is shown in Figure 3b. This grammar is modelled on that of
(Gagnoulet, C., Jouvet, D. & Damay, J., 1991) The grammar shows the aspects of the query domain
that are refevant at each stage of the dialogue. In a small-vocabulary speech response system, an
important issue is how we restrict the caller's vocabulary 1o that which can be recognised by the
system. To ensure this, we allow Groucho to seize the conversational initiative by stating from the
beginning, and at each stage, what the domain context is and what input options are expected at that
stage, so that the caller knows what information to provide and how to express it.

The key advantage this structure provides is a reduced number of words expected to be uttered at
each stage of the dialogue. Thus, rather than having to decide which of 17 words was uttered, we need
only to decide which of a maximum of 4 words was uttered. This improves recognition robustness and
simplifies the networks as a simple network is used for recognition at each stage. If none of the
expected words Is a strong contender, the system can try networks for other dialogue stages as a
back-up.

Each of the training and testing data sets consisted of 20 instances of the 17 words from 30 speakers.
This gave a total of 5100 instances for both training and testing. Each instance consisted of 187
positive real numbers representing the energies of 16 filters over 10 time windows, including the sum
of each filter and time window (17xt 1).

Groucho was implemented on an IBM-PC using the Sound Blaster Pro c¢ard for speech digitizing and
spoken feedback generation. In a simplified version, with synaplic weights of 5-6 bits precision (the fult
version used 24 bit floating point weights), the ANNs used for the Groucho system require only 3 k of
memory 1o store. The accuracy of such a system is around 94-98% on tests with speech data not used
in training. The reduction in precision of the synaptic weights resulted in a decrease in accuracy of less
than 1% (c.f. Fig 4.).

DISCUSSION

1. Simplicity of the classifier. The ANNs considered in this paper (mask perceptrons) are very simple to
implement in hardware. Practically, the only operations required are checking of logical conditions
("AND") and summations of small numbers (there are no costly multiplications). Due to this simplicity,
for the tasks considered, the networks simulated even on a very simple micro-processor (6800 etc.)
provides real-time word classification, and the speed of preprocessing (filters) is the most time
consuming component of the recogniser.
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Level Fan-in |No.Bits Memory Accuracy |No.Bits Memory  Accuracy
1 177 24 25k 94.7% 6 0.8k 943%
2 156 24 22k 968% N 0.6k 96.7%
3 124 24 1.7k 972% S 0.5k 972%
4 239 24 34k 96.7% 6 1.0k  96.0%
5 81 24 1.1k 98.7% 5 0.1k 98.7%

Figure 4. Comparison between implementations of Groucho with the full and restricted
precision (number of bits) of synaptic weights. “Level" refers to the level of the dialogue
grammar in Fig. 3. “Fan-in” and “Memory” have the meaning as in Fig. 2.

2. Relative memory efficiency. For comparison, one of the popular commercial systems for isolated
speech recognition requires 2.4k of memory per single template (word). Hence, for a multilingual
application requiring 40 templates, it will use 96 k of memory, i.e. 24 times more than the ANN in (i),
not to mention the much greater computational power required by their classifier. The corresponding
numbers for multiple speaker and single speaker recognition experiments requiring at least 10
templates are 14 and 83, respectively. This memory efficiency demonstrated by mask perceptrons
allows a number of simple practical approaches to improve accuracy, e.g. by combining multiple
Jindependent ANNs and using a voting scheme to determine the most likely correct word.

3. Some implementation issues. In some potential applications the cost of speech recognition devices
must be minimal. For example, an estimated cost of a practical digit recognition system for the basic
telephone would need to be less than $5, while for a small business telephone system the cost would
need to be less than $20. The experiments reported in this paper show that mask perceptrons can be
used to build such practical devices. Two options can be considered here.

(i) A dedicated digital VLS! chip using a combination of AND gates and adders (Kowalczyk at
al, 1991). The processing of the speech can be implemented in analog VLS using a combination of
bandpass filters, integrators and comparators. Practically, in this case the network would have to be
trained off-chip.

(i) The use of a low cost processor for the simulation of the network (e.g. Motorolla 6811, Intel
8051, Analog Devices 2105, etc.). The front end needed for the processing of the speech may still be
implemented as before. In this system, it will be relatively easy to update and adapt automatically the
structure and the weights of the network to the users as the system is used and the new training data
becomes available.

4. Audio feedback generation. In a practical implementation of a spoken language understanding
system the generation of audio feedback becomes an issue. In general, some form of response is
required so that the user has confirmation that the recognition system has understood them correctly.
Audio feedback seems to be most natural. Currently there are VLSI devices available to convert text to
speech. However, devices of acceptable quality are too expensive to be used in a low cost system. An
alternative solution is to store the digital representation of the speech in a ROM (~40k for ten digits)
and then to use a DAC to play back the required response.

5. Relevant research. The usage of low precision weights is one of the issues in practical development
of ANNs (e.g Xie & Jabri, 1992)). Some authors reported that 6-8 bit resolution of synaptic weights was
sufficient to obtain practical ANNs with reasonable performance (cf. IEEE Trans. Neural
Network, 1992). Fig. 2.a shows that 4-6 bits are sufficient in our case. '

The idea of using a simple signal processing based on a bank of frequency filters followed by a sirhp!e '
feed-forward neural network for classification was also pursued by others (e.g. Unikrishnan, Hopfield
& Tank, 1992).
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6. Usage of real life data. It is worthwhile to mention that in our experiments apart from the simple
signal processing we used relatively noisy, ‘real life' data (e.g. spoken in natural office environment,
over a public telephone line with a signal to noise ratio of 15 dB). This should be contrasted with
“clinically pure” database recorded in sound-proof environment used often by others in speech
recognition experiments.

7. Future research. More research is needed to determine how many speakers are required to
produce a reasonable system with an ANN small enough to meet the accuracy and cost specifications.
Also the optimal selection of filters, time windows and inclusion of other speech attributes should
improve the accuracy of the system and will be a subject of future investigations.

CONCLUSION

These experiments show that a practical spoken language communication system can be
implemented using an ANN approach, a simple dialogue grammar and simple low cost technology.
With further effort we may =vpect improvement, especially in terms of larger vocabulary and accuracy
in speaker independent recognition tasks.

ACKNOWLEGEMENT.

We acknowledge the contribution of Mr. R. W. Newton, of The University of Queensland, in the
development of Groucho systern. The permission of Director of Research, Telecom Australia, to
publish this material is also acknowledged.

REFERENCES
{EEE Trans. Neural Networks (1992), 3(3), Special issue on Neural Network Hardware.

AKowalczyk &H.L. Ferra, and G.Jenkins (1990). Experiments with mask-perceptrons for speech rec-
ognition. In R.Seidl, ed., Speech Science and Technology - Proceedings 1990, pp. 16--21, Canber-
ra. ANY Printing Service.

AKowalczyk, G.Aumann &H.L. Ferra, and J.Cybulski (1991). Associative mappings with positive
bounded coefficients. in T. Kohonen at.al, eds, Arificial Neurai Networks, Proc. inter. Conf. on Art.
Neura! Net. (ICANN-81) Espoo (Finland), 1991. North-Holland, Amsterdam.

A. Kowaiczyk & H. Ferra (to appear). Developing Higher Order Networks with Empirically Selected
Units, IEEE Trans. on Neural Networks

Rowles C., Huang X., de Beler M., Voinwiller J., King R., Matthiesson C., Sefton P. and O'Donnell M.
(1992), Using prosody to assist in the understanding of spoken English, this volume.

K. P. Unikrishnan, J.J. Hopfield and D.W. Tank (1992), Speaker-independent Digit Recognition Using
a Neural Network with Time-Delayed Connections, Neural Computation, 4 (1), 108-119.

Y. Xie and M.A. Jabri (1992), Analysis of the Effect of Quantisation in Multilayer Neural Networks Us-
ing a Statistical Model, |EEE Trans. Neural Net., 3 (2), 334-38.

Gagnoulet, C., Jouvet, D. & Damay, J., (1991), Mairievox: A Voice Activated Information System.
Speech Communication, Vol. 10, No. 1.

341



