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ABSTRACT: By looking at the training of HMM as a general constrained optimization
problem with linear constraints, in this paper, a gradient projection method for nonlinear
programming with linear constraints has been presented to solve for “optimal” values of
the model parameters. The presented algorithm has been shown {o be convergent and to
have a linear convergence rate. When this method is applied to the training of HMMs with
discrete or Gaussian mixture observation densities, a very simple formulation has been
derived due to the special structure of the constraints of HMM parameters.

INTRODUCTION

Hidden Markov Models (HMMs) owe their current popularity io the existence of an efficient training
procedure, the Baum-Welch algorithm. While this kind of reestimation formulas provides an elegant
method for finding a local maximum of the objective function (iikefihood function), their success
depends critically on the particular form of the objective function and constraints imposed on the
HMM (Baum and Egon, 1967; Baum et al., 1970; Liporace, 1982; Juang, 1985). There are many
cases of HMM training for speech recognition where the conditions required by the Baum-Welch
formuilation are apparently not satisfied.

Generally speaking, in HMM-based speech recognition, the purpose of training is to find the HMM
parameter set A which will result in a decoder of the lowest possible recognition error rate. This is
done by maximizing (or minimizing) some objective function R({A). There are thus two important
and difficult problems to consider. The first is to determine a meaningful objective function which
should be such that, whenever R{ X )>R(A), then A produces a better decoder than that from A.
Once a function A(A) has been chosen, the second problem (the estimation problem) is to find the
parameter set A which maximizes it. We are not concerned about the first problem, but just focus
our attention on the second one in this paper.

in this paper, by looking at the training problem of HMM as a general constrained optimization
problem with linear constraints, a gradient projection method for nonlinear programming with linear
constraints will be presented to solve for the “optimal” values of the model parameters. When this
method is applied to the training of HMMs with discrete or Gaussian mixture observation densities,
a very simple formulation will be derived due to the special structure of the constraints of HMM
parameters, and this derivation requires no special form of the objective function.

THE BASIC ALGORITHM OF THE GRADIENT PROJECTION METHOD

Historically, the gradient projection method was proposed and extensively analyzed by Rosen
(1960). Let x;, i=1,2,--,m, be the coordinates of a point x in the m-dimensional Euclidean space
E™. x can also be represented by a column vector whose transpose is x7 ={x,, x5, =, X,). Let
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f(3)="f (x4, X2, X,) be the objective function with continuous and bounded first partial derivatives
with respect to the x;'s. In this notation, the general nonlinear programming problem with linear
constraints can be expressed as:

Maximize f(x) (n
subject to linear equalities and inequalities of the form:

nx—¢ =0 =12k (2)

nx—c >0 izk+t, o p 3

where the n; are unit normals and the ¢; are scalars. For simplicity, the unit normals { n; } are
assumed linearly independent. The constraints restrict the solution to k hyperplanes and p—%
closed half-spaces. Their intersection R is, in general, a convex polyhedron and calied the
“feasible region”.

Corresponding to each of the p constraints, an (m—1)-dimensional manifold can be defined which
is a hyperplane denoted by H;: n/x—¢ =0, i=1,2,~,p. Considering any q linearly independent
hyperplanes Hy, H,, -+, H,, the intersection of them is in general an atfine subspace (or flat) of E™
and will be denoted by F,. If all of these g hyperplanes contain the origin, this intersection is a
linear manifold denoted by M,. When movement is restricted to a particular flat F;, the linear
manifold M, parallel to it is the “constraint manifold”. With an mxq matrix N, defined as:
Ng =[ny,ny,--,ng), it can be shown (Rosen, 1960) that an mxm matrix defined by

Pg = I-Ng(NJN,)'NJ (4)

is a projection matrix which projects any vector in E™ onto the constraint manifold M, parallel to
Fq. where Lis an mxm identity matrix. So, if Xo is in Fy, and ye E™, then x=x,+P.y is still in F,.

The main idea of the gradient projection method is to search along the projection of the gradient on
the constraint space for a local maximum. Suppose the current “active constraints” correspond to
the g hyperplanes as discussed above, then the search direction can be computed as z=P,g(x),
where g(x) denotes the gradient of f{x). One can easily show that if zz0, then it is a direction of
ascent for f(x). Since g(x)-z = g(x)-P,-g(x) = Ny (NJN,)"NJg(x) is orthogonal to z, we have
g’ (0 z=(g"(x)-z"+27)-z=|z|2 Thus, if z=0, then g’ (x)z>0 and it is a feasible direction of
ascent on the working surface. So, the gradient projection method is essentially a steepest ascent
method in the flat F, defined by “the active constraints”. Note that the “equality constraints” in (2)
are always “active”. The basic iterative algorithm of the gradient projection method can be stated
as follows:

Let i denote the iteration number, at any iterate x”, g denotes the number of active constraints in
the working set and /; denote the set of indices of these constraints. Assume that a feasible
starting point x@ is given. If x% lies in the intersection (F,) of g linearly independent hyperplanes,
then these constraints are added to the working set. The k hyperplanes that correspond to the
equality constraints (2), where 0<k<gq, are added first followed by the other inequality constraints.
Set i « 0. Determine /o and g and execute the following steps :

Step 1: [ Test for convergence ]
Given x, g compute P,-g" and the first-order estimation of the Lagrange multipliers
r=(NJNo)'NJg® Iif Pog=0 and r£;<0,j=k+1,k+2,q, then x? is a (constrained)
stationary point, and the algorithm terminates with x? as the solution. If this is not the case,
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go on to step 2.
Step 2: [ Choose which logic to perform |
Decide whether to continue maximizing in the current subspace or whether to delete a
constraint from the working set:
(1) if JIP4-g"l > max {0,%rsb;”2}, then continue maximizing in the current subspace by

going to step 3. Here s = arg_ inTax {r;} and by is the sth diagonal element of (NqTNq)"‘
ekatmq
(@) if ||Pq~g"’||s~;—rsb;"2, then go to step 7.
Step 3: [ Compute a feasible search direction }
Compute 2" = P,-g", go on to Step 4.

Step 4: [ Compute a step length ]
Compute T, which represents the largest step that can be taken from x® in the direction 2
without leaving the feasible region A :

- { Cj—ﬂjrx(

U]
=L L et Tald
! T2 | je 1, and n]2 <O}

min {t;}  if n2% <0 for some je 4,
i

<l
1t

+oa it n/z%>0 for al je 4

Determine a positive step length 1%, <) <%, which maximizes f(x(+12%) (usually do a line
search). If 1) <7, go to step 6; otherwise, go on to step 5.

Step 5: [ Add a constraint to the working set |
i 1 = % imposed by the consiraint with index ¢, add f to /, set g« g+1, and update
Ng, P, accordingly. Go to step 6.

Step 6: [ Update the estimate of the solution |
Set x#1 ¢ x4 10-20, j  j+1, and go back 1o step 1.

Step 7: [ Delete a constraint from the working set ]
Delete the sth constraint from the working set, and set g < g-1, update N, , P,, and go
back to step 1.

That completes the basic algorithm. It has been shown that this algorithm is convergent, and
generally speaking, the rate of convergence is linear and is determined by the eigenvalues of the
Hessian of the Lagrangian restricted to the subspace tangent to the active constraints (Rosen,
1960; Luenberger, 1984).

How to do the univariate maximization efficiently in step 4 is still an open question. The gradient
projection method doesn’t need an accurate fine search. The optimal accuracy of line search that
allows the problem to be solved in the shortest time possible is problem dependent and can only
be determined through extensive numerical experiments on the actual problem. It is emphasized
here that it is not appropriate to compute a step length t without restriction such as using a step-
length algorithm for unconstrained optimization, and then setting T to T if the unconstrained step
length exceeds T. The popular safeguarded line search procedure can be adapted to include an
upper bound on the step length. For more detailed discussion of the stopping criteria for a line
search, see Goldstein (1965) and Wolfe (1969).

100



TRAINING HMM WITH THE GRADIENT PROJECTION METHOD

Let an N-state HMM be denoted by A=(m, A, B), where n = {m;}.i=1,2,~-,N, is the initial state

distribution; A = (a[,-},i,]=1,2,---,N, the state transition matrix; and B, the observation probability

function. For the discrete HMM (DHMM), B = {bx}.j=1.2,N, k=1,2,M, is the probability of

observing symbol k, in state j. For the continuous density HMM (CDHMM), the probability density

function is B = {b;(x)},/=1,2,,N , and in this paper, Gaussian mixture densities of the form
M

b(x) = T cuN(X,px,Wg) are assumed, where N(x,1, W) denotes a D—dimensional normal
k=1

density function of mean vector p and inverse covariance matrix W,

These parameters must satisfy the following constraints:

N
i)_:; m=1 and ® 20, /=12 N (5)
N .

E a; =1 and a; 20, ij=12-N (6)

For the discrete HMM:

M
/(-21 bp =1 and by 2e, j=12,N k=12-M 7
For the continuous HMM:

M
E Cik =1 and Cix

v

0, j=12N,k=12--M (8)

Widg 2 €, j=12-N, k=12-"M,d=12-D ©)

where e,,6; are two small positive numbers, and Wixas 1S the d-th diagonal component of the
inverse covariance matrix Wi

For an HMM-based speech recognizer, the purpose of training is to determine the HMM parameter

set A which will result in a decoder with the lowest possible recognition error rate. This can be done

by maximizing some objective function R(A). So the fraining of HMM can be viewed as a classical

oplimization problem with linear constraints (5) - (9). The gradient projection method presented in

Section 2 can be used to solve this problem. Furthermore, one can see that those constraints in (5)

- (9) can be divided into disjoint groups, i.e., no pair of constraint groups has variables in common.
N

Each such constraint group has either the form Type1: 3 x=1and x; 2¢, i=1,2,-- N or the form
=1

Type2: x; 2 €, i=1,2,-- M.

So, there are three kinds of variables, viz., variables with constraints of type 1, type 2 and variables
with no constraint at all. Thus, all HMM parameters and their associated constraints can be divided
info disjoint subsets, with the corresponding search directions computed and the working set for
each subset determined independently. The overall search direction is just the concatenation of
search directions of the disjoint subsets of HMM parameters.

(1) Computing the search direction for variables with type 1 constraints

For type 1 constraints above, it is assumed that there are ¢ “active constraints”. Note that the
equality constraint is always active, the remaining g—1 active constraints corresponding to the g—1
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variables, denoted as x,,, Xngr X - Then one can define the “active constraint matrix” as :

Ng = (¥ ) nxg, Where

1 1= n,
Yi = _\/_ﬁ_ Jfort<isN and vy = 0 otherwise ©r/=23,-4q (10)
With N, defined this way, one can derive:
N AN AN - - AN
N nNge2 1 - -
NN = 1 N 1 N-g+2 1 (11)
e N—q+1 . . :
N 1 T N=ge2 |,

After considerable algebraic maniputation using this result the search direction corresponding to
these variables is: z = [I—Nq(Nqu)“NJ]-Vf(x), where

of Q for isny, Ny, g4
ax; (12)
Zi=3p for i=ny,ny, Ny
1 B

N—G+1 1, Ty 9
J# N2,y

the first-order estimate of the Lagrange multipliers is:

ar ar
r = (NJNg)'N]-VF(x) = VN -0, 2L —q, -,
(NgNg)T'Ny (®) ={ ax,,‘ aan_‘

-y’ (13)

+1
of the basic algorithm discussed in Section 2 to decide if a constraint from the working set is to be

deleted.
(2) Computing the search direction for variables with type 2 constraints

and the sth ( s 22 ) diagonal element of (N,,TN,,)"1 is %_g—@. These terms will be used in step 2

For type 2 constraints, one also assumes that there are g “active constraints”, with the associated

variables denoted by x,,, X, Xn,. Then the “aclive constraint matrix” can be defined as:
Ng = (¥j ) nxg, for j = 1,2,-,g where

1 ii=n 14

Yi =10 otherwise (14)

then one gets N,,TN‘7 =lqxq, The corresponding search direction z is such that

af for i#ny, ny, Ny
B ax; (15)
Zi=30 for i=ny, Ny, Ngy

The first-order estimate of the Lagrange multipliers is:

102



o f oty

F= (NGNGTNG V700 =[50, 0,
1 2 g

The sth diagonal element of (Nf,TNq)‘1 is simply 1.
(3) For variables with no constraint, the search direction is simply their gradient vector.

From the discussion above, one can see that when the gradient projection method is applied to
HMM training, the computation can be greatly simplified due to the special structure of the
constraints. This derivation does not require the objective function to be of any special form. This
may prove to be an advantage since the Baum-like algorithm is not applicable to all objective
function. Furthermore, the constraints may be changed. Although the Baum-Welch algorithm can
be somewhat generalized to suit the new constraints, it cannot be generalized to work with
arbitrary linear constraints, whereas the gradient projection method discussed in Section 2 will be
applicable to such cases.

CONCLUSION

A gradient projection method for nonlinear programming with linear constraints has been presented
and shown to be convergent with a linear convergence rate. When this method is applied to HMM
training, a simple formulation has been derived. This general optimization technique is not only a
viable alternative of the classical Baum-Welch algorithm, but it can also serve as a preferable
method in general HMM training problems when the objective function and constraints fail to satisfy
the conditions demanded by the Baum-Welch reestimation formulas. Due to the existence of this
kind of classical optimization methods, more flexible modeling of speech signal and more
sophisticated training of model parameters for speech recognition can become viable.

REFERENCES

Baum, L. E. and Egon, J. A. (1967) An inequality with applications to stalistical estimaticn for
probabilistic functions of a Markov process and to a mode! for ecology, Bull. Amer. Math. Soc., 73,
360-363.

Baum, L. E., Petrie, T., Soules, G., and Weiss, N. (1970) A Maximization Technique Occurring in
the Statistical Analysis of Probabilistic Function of Markov Chains, The Annals of Mathematical
Statistics, 41, 164-171.

Goldstein, A. A. (1965) On Steepest Descent, SIAM J. on Control, 3, 147-151.

Juang, B. H. (1985) Maximum-Likelihood Estimation of Mixture Multivariate Stochastic
Observations of Markov Chains, AT&T Technical Journal, 64(6), 1235-1249.

Liporace, L. R. (1982) Maximum likelihood estimation for multivariate observations of Markov
sources, IEEE Transactions on Information Theory, IT-28, 729-734.

Luenberger, David G. (1984) Linear And Nonlinear Programming (Addison-Wesley Publishing
Company).

Rosen, J. B. (1960) The Gradient Projection Method For Nonlinear Programming--Part I: Linear
Constraints, J. Soc. Indust. Appl. Math., 8(1), 181-217.

Woilfe, P. (1969) Convergence Conditions for Ascent Methods, SIAM Review, 11, 226-235.

103



