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ABSTRACT - We discuss the number of mixture components in continuous mixture density
HMM phone models (CHMMSs) and present the principle of “distribution size uniformity,” in-
stead of the “mixture number uniformity” principte applied in conventional approaches. An
algorithm is introduced for automatically determining the number of mixture components.
The performance of this algorithm is shown through recognition experiments involving all
Japanese phonemes.

INTRODUCTION

One of the major problems with a CHMM is how to determine its structure, e.g. the number of states, the
transition and the number of mixture components (Takami, 1992. Kamp, 1985). This paper considers
the number of mixture components in each state in the structure of CHMMs. In most conventional ap-
proaches to speech recognition that involve the CHMM, the number of mixture components, heuristically
determined in advance, is uniformly given to all states. This, however, causes the frequent presence
of extremely small variances of mixture components in the CHMMs, since different phones may have
different distribution characteristics and different amounts of available training data. We discuss auto-
matic rather than heuristic allocation of a given total number of output probability distributions among the
CHMM states.

In this paper, we propose an algorithm for automatically determining the number of CHMM mixture com-
ponents for each state, and the performance of this algorithm is shown through recognition experiments
involving all Japanese phonemes.

INVESTIGATION ON THE INFLUENGE OF THE NUMBER OF MIXTURE COMPONENTS

When the number of mixture components is especially large, it is important to investigate the precision
of the model estimation using an insufficient amount of training data.

To avoid this problem, the sizes of output distributions were analyzed. Figure 1 shows the relationship
between the amount of training data and the distribution size of CHMM output for various numbers of
mixture components. Each scatter point represents the value for one phoneme. We define the distribu-
tion size as the determinant of the covariance matrix of the output probability distribution. Distribution
size s is defined by the following equation; ~
Mn
s=(1/Nmp)3 > 1og|Spm|

n=lm=1
where N is the number of states, m, is the number of mixture components at state n and S,.,,, is the
covariance matrix of the m-th mixture at state ». In this figure, the distribution size tends to decrease
with the number of mixture components. In particular, the distribution size becomes very small for an
insufficient amount of training samples. This is the reason for the occurrence of estimation errors when
the training data is insufficient.

We investigate the estimation errors by using the HMM likelihood output for both training data and test
data. Figure 2 shows the relationship between the number of mixture components and the likelihood
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output for both training data and test data. The likelihood outputs are normalized by dividing by the
likelihood output for one mixture. Thus, all lines start at 1.0. Though HMM likelihoods increase with
increasing number of mixture components for the training data, not every output increases for the testing
data. By comparing these results with the distribution size obtained previousty we could make the follow-
ing observation. If the size of the distribution is extremely small, the output value increases very much
with the training data, but decreases with the test data. This indicates the occurrence of over-tuning of
the CHMM to the samples in the training data.
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Figure 1: Relationship Between the Number of Training Samples and the Distribution Size
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Figure 2: Relationship between the number of mixture components and the HMM log likelihood

PRINCIPLE

When the CHMM parameters are trained with insufficient data, the determinant of every covariance as
a distribution size decreases a great deal. On the other hand, the CHMMs having a larger distribution
size require a greater number of mixture components to represent them precisely. In consideration of the
above reason, the principle we give here is that of uniformity of the output probability density distribution
size rather than the conventional principle of the uniformity of the number of mixture components.

ALGORITHM

In this paper, we propose two ways to automatically determine the number of mixture components for a
given total number of output probability distributions.
o The number of mixture components is the same within a phoneme but may be different among
phonemes (proposed method i)
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e Each state has a variable number of mixture components (proposed method i)
In this section, we describe an algorithm for proposed method il. Since the algorithm of proposed method

| is very similar, it is omitted. To determine the number of mixture components, we made a number of
conventional CHMM phone model sets, each with a different number of mixture components. Figure 3
shows the relationship between the number of mixture components and the distribution size for all states
using the above results. The curves that result from this experiment are labelled f£(m?), where p is the
phoneme number, n is the state number and m is the number of mixture components. It was found that
all these functions monotonously decrease with the number of mixture components. The reason why
some lines drop significantly is that there is over-tuning due to training data insufficiency.

The algorithm for automatic determination of the number of mixture components for a given total number
of output probability distributions using f2(m?) on the figure is as follows;

The algorithm for automatic determination of the number of mixture components -~
Defined Symbols
P: the number of phonemes(=49) N: the number of states(=3)
M: the total temporary number of gaussian distributions
M,: the total final number of gaussian distributions
m4: the number of mixture components k: the number of iteration
s distribution size at k£ «: learning constant
so: [nitial value for s

Algorithm
1. set theinitial value

2. calculate the number of mixture components
k=k+1

mf, = fE7} (sx)
P N
M=>"%"m}
p=ln=1
3. renew s
if M =M, then gotoSTEPA4.
elseif M < M,then sgp1 =s;—«a
elseif M > M, then sy, =s;+a

goto STEP2.
4. re-estimation of CHMM with obtained number of mixture components

J

Since re-estimation of the CHMM parameters only commences after the numbers of mixture components
have been finalized, this algorithm can work rapidiy.

PHONEME RECOGNITION EXPERIMENTS

The above algorithm for a given total number of output probability distributions was tested in speaker
independent phoneme recognition experiments using all 34 Japanese phonemes. The given average
numbers of mixture components per state were 1, 3, 5 and 10 corresponding to M, = 147, 441, 735 and
1470. In consideration of calculation costs, the maximum number of mixture components for a state was

set as 35. We tested the algorithm in three different ways:
e All states have the same number of mixture components (conventional method)
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Figure 3: Relationship between the number of mixture components and the distribution size of HMM
(R (mk))

» The number of mixture components is the same within a phoneme but may be different among
phonemes (proposed method 1)
o Each state has a variable number of mixture components (proposed method )]
Table 1 shows the experimental conditions. Diagonal-covariance 4-state 3-loop CHMMs were provided
for these experiments. The structure of the model is shown in Figure 4. The phoneme CHMMSs were
trained with 736 isolated words uttered by 12 male speakers. The testing data was 216 isolated word
utterances from 10 different speakers. The recognition rate was calculated by the following equation;

Cor(%) = (N — 5 — D)/N x 100(%)

where N is the total number of testing samples, S is the number of substitutions and D is the number of
deletions.

Figure 4: The Structure of HMM

DISCUSSION

The results are shown and compared in Table 2. The experimental results reveal that, for the same
total number of output probability density distributions, having two types of variable number of mixture
components are better performance-wise than a fixed number of mixture components.

Figure 5 shows the number of mixture components for each phoneme obtained with “proposed method
I" where the average number of mixture components is 10. The number of training samples is also
indicated. In stop /k/, vowels, nasals and /r/, large numbers of mixture components were chosen. These
phonemes exhibit large spectrum variations among speakers. Contrary to these phonemes, the numbers
of mixture components are small in the affricates and fricatives apart from /h/.
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Table 1: Experimentat Conditions

) - Sampling freqency: 12 kHz ]
Analysis Conditions Hamming window: 20 ms

Pre-emphasis: 0.98

Analysis period: 5 ms

16th-LPC cepstrum -+ log power +

16th-Acepstrum + Alog power

Training Data | 12 male speakers, 736 isolated words
736 X 12 = 8,832 samples

Testing Data | 10 male speakers, 216 isolated words
216 X 10 = 2,160 samples

Phoneme plp2tlt2kl k2blb2did2glngmn N

Models rwysshhzchl ch2 tsl ts2 sy hy 2y cy

py ky by gyl ngy my ny ry aa i uu eei oon
aiueosience (1 means word-top)

Speech Data

There are two reasons why a small number of mixture components results. One is an insufficient number
of training samples. The other is that training samples have large spectrum variations. For example,
although /s/ and /sh/ are trained on sufficient data, the number of mixture components is still small.

Table 3 shows the number of mixture components for each state obtained with the “proposed method
II” where the average number of mixture components is 5. The number of mixture components is large
in the 1st and 3rd states for vowels where the spectrum variation is large because of the influence of
phoneme context. For unvoiced plosives, the number of mixture components is small in the 1st state
which seems to represent the closure segment. These results correspond well with observed speech
phenomena.

CONCLUSIONS

We discussed the number of mixture components in CHMMs and presented the principle of “distribution
size uniformity,” instead of the “mixture number uniformity” principle applied in conventional approaches.
An algorithm was introduced for automatically determining the number of mixture components. The per-
formance of this algorithm was shown through recognition experiments involving all Japanese phonemes.
We showed that the proposed two methods perform superior to the conventional method of a fixed num-
ber of mixture components per state.

Our future research topics include:

e automatic determination of the number of states for CHMMs,
e extension to continuous speech recognition by combination with the LR-parser (Kita, 1989).
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Table 2: Phoneme Recognition Rate {%)
ave. Fmixtures = the total number of gaussian distributions/(the number of phonemes X the number of states)

. all alike same within phoneme all variable
ave. #mixtures {conventional method) | (proposed method I) | (proposed method 1I)
i 62.46
3 72.46 74.58 73.76
5 74.92 76.93 77.47
10 77.84 78.49 79.62
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Figure 5: The Number of Mixture Components and The Number of Samples for Each Phoneme

Table 3: The Number of Mixture Components for Each State (mixture average: 5)

Phoneme The Number of Mixture Phoneme The number of Mixture
| Components for Each State Components for Bach State

p2 1-2-7 y 5-5-4

t2 1-1-3 s 2-1-12

k2 3-3-10 sh 2-1-3

b2 3-3-13 h 5-2-11

d2 4-2-4 z 5-1-5

gl 1-4-8 h2 1-1-2

ng 11-7-11 ts2 1-1-3

m 7-5-14 a 10-4-23

n 7-6-13 1 9-3-17

N 3-1-1 u 14-4-19

r 7-8-11 e 9-1-15

w 5-3-2 o 23-3-31
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