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ABSTRACT - This paper is to present a fixed point implementation
of Regular-pulse Excitation Linear Predictive coder (RPE-LPC)
that combines with long term prediction (LTP) on using a single
TMS320C25. The bit rate of the coder is 13kbits/s. The coding
is done by Toeplitz approximation that permits the use of lattice
filter for reducing the finite wordlength effects such as
coefficient sensitivity and roundoff error.

INTRODUCTION

The coding scheme based on regular-pulse excitation linear predictive
coding that combines with long term predictor is being adopted by CEPT
Groupe-Speciale-Mobile (GSM) as the standard of speech codec in digital
mobile radio system in Europe (Vary et. al., 1988). In the encoding and
decoding, the direct form structure is commonly used for synthesis and
regular-pulse encoding. Such direct implementation can simplify the
formulation but has very large dynamic range and poor numerical behaviour.

The most important and time-consuming part of the codec 1is the
regular-pulse excitation encoding. The computations 1involve the
calculation of the impulse response of the weighting synthesis filter, the
covariance matrix of the impulse response and the solution of the Normal
equation. The direct implementation of the equations has very poor
numerical errors and heavy computations. In order to reduce the
calculations 1in obtaining the regular pulses, the problem can be
simplified by Toeplitz approximation. Not only there 1s improvement in
the calculation and also the pulses can be solved by using numerically
stable lattice algorithm.

In developing the lattice algorithm, first of all we regenerate the
autocorrelation lags directly f{from the coefficients of the weighting
filter instead from the impluse response. Then we apply the algorithm as
in (Roux & Gueguen, 1977) on the Toeplitz system with spacing of four to
compute a new set of reflection coefficients. The new reflection
coefficients together with a set of new variables construct an efficient
lattice-ladder filter for solving the Toeplitz equation.

The algerithm is implemented on a single TMS320C25 and is proved to have
good numerical behaviour.

RPE~-LPC ENCODER

The block diagram of the RPE-LPC encoder is subdivided in five functional
blocks as shown in Figure 1: preprocessing, LPC analysis, short term
analysis, long term prediction, RPE encoding.

The preprocessing is to remove the DC component and use a first order FIR
filter to pre-emphasize the speech signal in order to "flatten" the speech
spectrum and to reduce the signal’s dynamic range for easing fixed point



implementation.

The LPC analysis is to calculate the reflection coefficients from the
autocorrelation lags in every 20 ms by using a fixed point computational
technique as introduced in (Roux & Gueguen, 1977).

Let v" denote the intermediate variables as defined by
1

m
vi= 3 a"r (1)
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where a" and r,are the m—-th order forward predictor and the i-th

autocorrelation lag, respectively. It has been shown that the squared
magnitude of the variables are bounded by r, - The recursions for

computing the reflection coefficients k“1 are summarized as follows:
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The reflection coefficients are quantized and coded in the form of
log-area ratios (LAR}. The current and the previous set of decoded LAR
coefficients are interpolated linearly in every 5 ms to avoid spurious
transients. The speech signal is then inversely filtered by the
corresponding transversal lattice filter to generate a residual signal
(prediction error signal) d(t). The advantages of using the lattice
filter are two folds: (1) we do not require to calculate and use the
prediction filter whose coefficients have very large dynamic range; (2)
the lattice filter is a low noise structure.

The long term predictor sgction is a closed loop circuit that uses the
reconstructed excitation d (t) to estimate the residual signal. The gain
b and the delay M in the predictor are updated in every 5 ms as follows:

M = arg{ max C(i)} (6)

where
39

&
C(1) =J§od(m1+J)d (m1 +3-1),
m1=mo+401, 1=0,1, 2, 3 i=140, ..., 120

reconstructed excitation
= long term prediction + quantized regular pulses.

#®
d (t)

Regular pulse excitation encoding

Let L, N and K denote the frame size, the number of pulses and the number
of phases, respectively. In the standard, they are respectively equal to
40, 13 and 3. Let h(t) denote the impulse response of the weighting
filter 1/A(z/¥). The corresponding response matrix H is thus given by
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h(0) h(1) . . . h(39)
0 h(0) h(38)

0 0 h(0)

Mathematically, the response due to the memory hangover and the residual
is given by

y =y +dH. (8)
Q m
. where
ym = response due to memory hangover
& =d - d‘ , d = residual vector, d* = residual estimated by LTP

In the implementation, the residual &(t) is inputted to the synthesis
filter of lattice structure as shown in Figure 2 in which the weighting
parameter ¥ is multiplied to the delay outputs.

The response vector y due to the regular pulses of phase 1 is given by

1
where z is the excitation pulse vector of phase 1 and H1 is the submatrix

y. = z, Hl, 1=0,1, 2 {(9)

of H given by

H =M H (10)
where
=1 if J=iK+1 , 1=0, ..., K-1
M =4 Y
! =0 otherwise, 0sisN-1, ©O=j=L-1.

The error vector el is the difference between Y, and ¥, .

e =y

1 Y

5}
‘ The optimal pulse vector z, is the one that minimizes the squared error
ele: and is given by

_ t to-1
z = yH [H1H1] . (11)

A simple algorithm is proposed in (Kroon et. al., 1986) for determining
the phase 1: use a low order "smoother" to process the residual signal
d(t) (Flanagan et. al., 1979), and then downsample the response at
different phases to form K subsequences, the phase for which the
subsequence has the maximum energy is selected.

The solution according to (11) is quite computational intense. The
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calculations can be reduced by modifying the matrix HIH: to some simple

forms. The Toeplitz approximation has been proved to have very close
performance to the solution as obtained in (11). Besides, such
approximation provides a low noise lattice implementation as discussed in
next section.

Toeplitz approximation

In direct implementation of (11), we require to compute the impulse
response of the weighting filter and then calculate the autocorrelation
lags. In the following, we avoid the computation of the impulse response
and calculate the autocorrelation sequence directly from the prediction
filters.

The coefficients of the weighting filter can be obtained by finding the
impulse response of the analysis filter as shown in Figure 3. Then the
reflection coefficients of the weighting filter can be calculated by
inversing the Levinson algorithm:

kK =a" |, a'm" = m~th coefficient of the m-th order predictor
m m

Va0 -6
0 o m

= @™ -k a® /(1 - X))
1 1 m wm~l [

with vP = 1.
o

According to equation (3), the autocorrelation sequence is recursively
computed as follows:

m
m m
-k v. - £ a r , form=p (12)
r _ m+1 O 1=1 1 m+l1-1
m+1 m
-z ar , form>p
I=1 1 p~1

The Toeplitz matrix HIH;' has the first row elements given by {ro, r4, ey

r36). Let ;l= T for 1 =0, 1, ..., N. We can make use of equations (2)

to (5) to calculate the new set of reflection coefficients for obtaining
the solution in (11).

Let us rewrite equation (11) as

Rz=q, q=yo}{§. (13)

where the vector g can be obtained by decimating the response of the
weighting filter at the phase 1 with the vector y, as the input.

The solution 2z <can be solved recursively using the following

lattice-ladder algorithm. Let us define the solution at m-th stage be z.

The recursion for computing the solution is given by
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b4 = + k A (14)

where Am is the m-th order backward prediction filter. Let us define a

- m
new variable gl as

m
m m -
g = % 2 T (15)
We have
m+l b m
gl - gl * km1~1 vm+1—1 : (16)

The coefficient k” is calculated by
m

kb = (qm - g:'l) / VZ »oq = m-th element of the vector q. (17)

m

Using the new reflection coefficients we can obtain the backward
prediction filters and then compute the solution recursively by equation
(14).

The complexity of the new Toeplitz approximation method is summarized as
follows:

weighting filter coefficients 3%/ 2
inverse Levinson algorithm p2
autocorrelation sequence Lp
calculation of q vector Lp
Toeplitz solution 3p%/ 2

The overall complexity is about g(ZLp + 4p2) compared to the direct
implementation of O(LN + Lp + 2p°). It is apparent that the Toeplitz
method requires lower computations and better numerical behaviour

RESULTS

The new algorithm is implemented on a single TMS320C25. The average
signal to noise ratio is about 13 dB for a number of Chinese utterances.
The hearing test shows that the new implementation has better performance
than the direct implementation of the RPE encoding.

CONCLUSION

A low noise fixed point implementation of RPE~LPC with long term predictor
has been presented. The algorithm is shown to have lower computations and
better numerical properties than the direct implementation. As a result,
the algorithm is well suitable for implementing on low cost fixed point
digital signal processor.
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Fig. 1 The block diagram of the RPE-LPC encoder
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Fig. 3 Analysis lattice filter
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