AN ENVIRONMENT FOR SPEECH SIGNAL PROCESSING
Lorenzo Cioni*T
*Laboratorio di Linguistica, Scuola Normale Superiore
TFacollz‘a di Scienze dell'informazione, Universita degli Studi di Pisa

ABSTRACT - The aim of this paper is to describe a project that we are developing at our
Laboratory. This project aims at the definition of an environment for speech signal processing
in which a set of applications can co-operate through a library of user-defined data that
represent either “the outcome of" or “the source for" such applications.

INTRODUCTION

The aim of this paper is to describe a project that we are developing at our Laboratory and whose scope
is the definition of an environment for speech signal processing. We called it Mod-lab.

With speech signal processing we mean both analysis and synthesis of speech: analysis of sampled
data files and synthesis from both text files and data deriving from analysis.

The environment is composed by a set of concurrent applications that can co-operate among
themselves through a library of user-defined data (also data library in what follows) that represent either
“the outcome of" or "the source for" such applications. This frame represents the logical architecture of
the environment. Each application within the environment is devoted to a particular task and is
characterized by a set of operations through which an user can handle the data contained within the
data library. These operations allow the switching among the applications and enable the applications
themselves to be linked together so that the data of a certain type can be processed in a sornt of
pipeline. In any case, each application must be as self-contained as possible and, therefore, must be
characterized by a coherent set of operations. The applications within Mod-lab perform operations
such as speech acquisition, disk storage and retrieval, playback, speech display and editing, speech
analysis and synthesis, statistical analysis of data and so on.

Among the applications the lab-interface and the manager are two shells that simplify the interaction
with any application and with the library of data, independently from their physical localization.

The data library is composed by a set of objects (basic logic entities) and is directly managed by the
manager. The user, either through the manager or within an application, can create a new object (new)
or open an existing one (open) so as o to manipulate it with one fitting application. The user can even
select the icon of an existing object: the control passes to the manager that lets the user choose one
of the applications that can handle that object.

An object contains a set of correlated but non homogeneous data that are the resuit of either
acquisition (speech signals) or synthesis (synthesis signals) and of the subseguent processing of
these data. An object is implemented as a finked list by using both files, that contain the data, and
tables, that contain information about each file and about the object as a whole.

Every application can access a set of objects and, for each object, to a set of files while a certain object
can be handled by a set of applications, depending on the type of data it contains. Every application, in
its turn, can produce new data that enrich the object itself and that can be handled by some other
application as well. Moreover, the objects are logically linked together, since distinct objects can
contain data of the same type and, therefore, an application can act over a set of objects either to
perform, for instance, comparisons or to establish correlations or to perform statistical operations and
SO on.

THE ARCHITECTURE OF THE ENVIRONMENT

The proposed environment is characterized by an underlying potentially distributed physical
architecture composed by one or more computing systems linked together in some way (cf. figure 1).
The Mod-lab is mapped over this physical architecture so that, within the environment, the composing
elements (i.e. applications and objects) have the same behavior independently from their physical
localization. With regard to this physical architecture we have that, from the system point of view, the

554



environment is characterized by two sets of elements: objects and applications (cf. figure 1). Each set
is composed by elements that can be either local (i.e. that are localized on the physical system through
which the user interacts with the environment, the so called Access Point or AP) or not {i.e. that are
localized on a distinct physical system that is finked in some way to the AP). Objects and applications
are told to be local only in relation to an AP and, therefore, in relation to a particular user that accesses
the Mod-iab. In any case an AP must, at least, hold the application that defines the interface between
an user and the Mod-lab (the Lab-Interface, cf. next section and figure 1) and can contain other local
applications and even local objects, even if this is not necessarily the case. The Lab-Interface allows
the user to interact directly with any application and, in an indirect way, with any object since, through it,
the user can access the manager (cf. next paragraph).

With regard to the application whose main task is the management of the objects (the Manager, cf. next
section and figure 1) it can be designed as a distributed application and, therefore, it may be seen as
composed by a set of co-operating modules, each module being iocalized both on every AP (local or
icon-bound modules) and on every other physical system that can contain objects (hidden modules).
Each local module that stays over an AP is, indeed, associated to an icon {cf. figure 1) and can be
accessed even through the Lab-Interface. Its task is the management of the local objects as a stand-
alone module and of the non local ones in co-operation with the other hidden modules.

From the user point of view, on the other side, the architecture of the environment is quite simple and
plain since every user accesses the physical architecture but he/she only knows something, often not
everything, about the logical architecture of the system. Each user, indeed, accesses the environment
through an AP (and so through a personal computer or a system like that) and directly interacts with
either the icon of the Lab-interface or the icon of a local object or the icon of a local application or the
icon of the local module of the manager (cf. figure 1) to perform his/her own data processing but, in the
same easy way, can as well interact even with non locat objects and applications (cf. figure 1). One of
the main goals of the proposed architecture is, indeed, that of freeing the users from the burden of
data managernent so that they can concentrate only on data processing. Further details will be given in
the next sections.

object server

Local object icon @ Local appilication icon s Local module @ Lab-Interface icon
Bl object (non local) Appiication {non local) C__> Hidden module

Figure 1. The physical architecture of the environment

555



CO-OPERATING APPLICATIONS
General framework

The Mod-lab is, therefore, characterized by a set of applications. This set can be subdivided either as
before on the basis of a criterion of localization (local applications vs non local ones) or on the basis of
the set of the characteristic operations of each application. Since, for our aims, the first criterion is
somewhat meaningless, for reasons of symmetry, we are going to use the other one. According to this
criterion, every application of the set is devoted to a particular task and is characterized by a set of
operations through which an user can handle the data contained within the data library. The operations
within this set are told to be inner operations if they are performed over the data by the current
application while are told to be outer operations if they are performed over the data by a distinct
application. The inner operations characterize each application by themselves and are available to the
user even if the application is executed in stand-alone mode and so outside the Mod-lab (this behavior
can be selected by the user through the Lab-interface by means of an inner operation of the Lab-
Interface itself). It is obvious that in stand-alone mode the outer operations of a generic application
cannot be executed by the user. Through the outer operations, indeed, the user can carry out the
switching from one application to another one (either with or without control passing) so that both
applications can work on the same data (object passing) or not. In this way the applications themselves
are linked together so that the data of a certain type can be processed in a sort of pipeline.

if the application switching occurs with control passing we have that the new application takes control
and the user interacts directly with it, its own operations and its own user interface.

If, on the other side, the application switching occurs without control passing, the new application
executes the requested operation over the current object and, when the execution is over, the calling
application resumes control.

It the case of control passing, the new application works on the current object (object passing) but,
obviously, can work even on different objects while, in the other case, it is forced to work only on the
current object. The application switching mechanism gives us a way through which we can implement
the outer operations of each application. To act in this way, within the set of the applications, some of
them will be designed so that they can execute in background mode. in this way we can obtain an
application switching without control passing. With this design methodology we obtain a multitasking
environment that is able to manage both complex and persisting entities, such as the objects, and the
switching among the applications.

The Lab-Interface and the Manager

The main task of the Lab-interface is the management of the interactions between the user and every
application the user can need. The Lab-interface allows the user 1o interact directly with the
applications and, therefore, even with the manager itseif and, through the manager, with the data
within the data library. From this point of view, the Lab-Interface is simply a sort of shell that allows the
user to interact easily even with non local applications i.e. without taking care of the physical localization
of the application itself, but this does not keep the user from directly interacting with a local application
through its icon (cf. figure 1). The Lab-interface is characterized by a set of inner operations and a set of
outer operations through which it can pass the control to one of the applications. The inner operations
allows an user both to customize the set of applications {but the manager) to which he/she can access
through the AP and to access directly the manager through its local module. This local module holds
the list of the addresses of the locai objects and the addresses of every other hidden module of the
manager to which it can ask for the list of the addresses of the objects that are local to each hidden
module.

With regard to the interaction between the user and the applications we have that an user can select an
application directly through its icon (every application has a corresponding icon) or through the Lab-
Interface (the user can switch to one of the applications or to the manager). The first way is suitable only
for local applications that can be executed even in stand-alone mode while the other one is suitable for
every kind of application. In the first case the user opens the application and work with it but indirectly
interacts with the local module of the manager so that the application is opened together with the set of
local objects it can handle. This allows a straightforward access from that application to the local objects.

556



In the second case the Lab-Interface shows to the user the set of the actually active applications and let
him/her either to open one of them or to tailor this applications set according to his/her own needs. As
an example, if an user is interested only in display and editing of speech signals he/she can define
his/her own set of active applications as composed only by those applications that perform those
operations, discarding every other application.

We note that when the user is working with an application he/she can choose either to close it and so
the Lab-Interface resumes control of to switch to another application among those that can be reached
by the cuirent application {control passing).

The manager, whose structure has been shortly sketched in one of the precedings paragraphs, is
surely the most complex application within the Mod-lab since it is composed by a set of co-operating
modules that can be physically distributed over both the set of APs and the set of "object servers” (cf.
figure 1 and next paragraph). If we look at the environment from an AP, we have a local module and a
set of hidden ones. The lecal module is the one running cn that AP while the hidden modules are
those running either on the other APs or even on some dedicated systems, the so called "object
servers”, whose main task is the permanent storage of objects but that can execute even some heavy
CPU-bound application. We i te, therefore, that the distinction is somewhat an arbitrary one because
it is linked to a point of view and so, from now on, we are going to consider the set of modules as a
whole and call it the manager, unless otherwise stated.

The manager, like the Lab-Interface, acts as a sort of shell that aliows an easy access to the objects
independently from their physical localization. The main task of the manager is the management of the
direct interactions between both the user and the applications and the library of data. It manages the
creation of the new objects and the passing of the either new or existing objects to the applications
and, moreover, it puts at the user's disposal a set of operations for the direct handling of the objects.
These operations are the so-called manager's inner operations. They allow the user either to create
new objects or to open an existing object with one of the available applications or to delete any existing
object or to examine the inner structure of any object, by listing every available information about its
composing elements. The management of the objects and of the various kinds of interactions compels
the manager to maintain a set of tables that alflow the run-time management of the connections both
among the objects and the applications and of the applications among themselves. This run-time
tables are localized within every module of the manager and, together with a table that contains the
physicai addresses of every other module of the manager and some status information (such as if that
node can be reached or not and so on), allow the fulfilment of requests in relation to non loca!l objects
or applications. Some of the tables are both the one that contains the addresses of the objects (ToO)
and the one that contains the addresses of the applications (ToA) and the one that contains, for each
application, information about which are the applications that implement its outer operations. The ToO
sets up a link between the objects and the applications and, besides a set of status information,
contains the physical address of every local object and of every non local object that has already been
accessed through a local application. The ToA contains the physical address of every active application
for a given user and, for every application, a set of pointers to the entries of the ToO that refers to
objects that can handled by a particular application. The ToR, at last, contains the cross references {or
rules) among the applications i.e. for each application which are the applications that implement its
outer operations.

THE DATA LIBRARY
General framework

We can define the data library together with the manager and the others programs to handle the data as
a data base management system (DBMS). Within this DBMS we have a distributed manager and a set of
dedicated applications together with a distributed data fibrary . Since the logical architecture of the
environment must be able to hide, as much as possible, to the users the physical localization of the
objects themselves in this section we put aside the distinction between local and non local objects.

The basic logic entity within the data library is the so called object while the basic physical entities are
the file and the table. From a logical point of view (cf. figure 2) an object can be defined as an even
emptly subset of the set of data contained within the data library: it contains a set of correlated but non
homogeneous data that are the resuilt of either acquisition (speech signals) or synthesis (synthesis
signals) and of the subsequent processing (with the more suitable application for a certain task) of

557



these signals such as F0, formants, statistical data and so on.

The users can create new objects or they can process the existing objects by using one of the
available applications, the more suitable for a given task, and this processing can involve more than one
application, even a set of applications linked together to form a pipeline.

New data

Data access g i
EER L7 ————=7" Data access

(
0B;

Figure 2. The data library and the data access

Every application of the set can have access to a set of objects and, for each object, o a set of files: a
certain object, indeed, can be handied by one or more applications depending on the type of data it
contains. For each object, on the other side, each of the fitting applications can produce new data that
enrich the object itself and that can be handled by some other application as well. In this way we have
that the objects are logically linked together, since distinct objects can contain data of the same type
and, therefore, an application can act over a set of objects either to perform, for instance, comparisons
or to establish correlations or to perform statistical operations and so on.

We, therefore, have a data library as composed by a set of objects that are directly managed by the
manager. The users can handle the objects through the manager in order either to create a new object
(command new) or to open an existing one (command open) or to handle an object with the manager's
inner operations. An open or new command can be issued both within an application and within the
manager. With regard to the new command, in the first case it causes the manager o create a new
empty object and pass it to the calling application while in the second case the manager creates a new
empty object and adds it in the set of the existing objects for a future usage.

In any case, the manager limits itself to the definition of the framework of the new object while the other
applications (but the LI) have the task of filling the object itself with the actual data.

With regard to the open command, in the first case it causes the manager to open a certain object and
pass it to the calling application while in the second case the manager lets the user choose at first
among the existing objects and, after, among the applications that can handle a particular object.

The same things happen if the user selects the icon of an existing local object: the selection of an icon
passes control to the manager that allows the user to choose one of the applications among those that
can handie that particular object. in any case, the act of opening a particular object allows the user to
manipulate it with one of the applications that can handle it.

The Objects

An object is implemented as a linked list of both tables and files: the files contain the data while the
tables contain information about each file and about the object as a complex entity (cf. figure 3).

We have indeed one table that identify the object itself (the so called descriptor) and a table for each
file within the object. An empty or new object consists of the only descriptor. The descriptor is
therefore allocated whenever a new object is created and contains the physical address of the object
as it is known to the module of the manager to which it is a local object. The global address of an object
is composed by this local address and by the address of the module. In this way we have an one-to-one
reference to the object. If the object is stored on an AP to the descriptor is also linked the icon of the
object: in this case an open command through the icon passes the descriptor to the application
through which the user want to handle the object itself. Each of the other tables contains both a
pointer to the associated file and a set of information about what are the applications that can handie
that file. Every application can access to an object through its gioba! address and, for each object, to a
set of its files depending on the information contained in each of the tabie that is associated to these
files. We note that the environment contains applications that produce data for the objects (acquisition

558



and synthesis) and therefore the set of applications is a consistent set.
An application can, in any case, create both new objects and new files in existing objects simply
interacting with the right module of the manager.

module of the manager

global address = iocal address +
moduie address

object
descriptor

Figure 3. The physical structure of an object

In this way we have a set of physical lists of tables, each table referring a file and each physicai list
forming an object, and a set of logical lists of tables: each logical list contains the tables that refer to files
that can be handled by the same application.

Every application, depending on the type of data it can handle, defines such logical lists according to
the set of objects the manager passed io it and to the information contained within the individual
objects.

CONCLUSIONS

The project shortly sketched in the present paper started at the end of 1991 and therefore it is yet in its
infancy. Nowadays we are developing both the inner part of the architecture and an Hypercard demo.
For what concerns the inner part of the architecture we are developing both the mechanism of
application switching and that of object management. When this phase will be over we are planning to
design the main applications for speech processing with their own user-interfaces in order to obtain the
first working prototype, with a limited set of applications and on a single Macintosh, fo be used as a
basis for further developments. This environment is going to be embedded in a Macintosh based
working environment but it could be embedded as well in any other multitasking environment with a
window-like user interface. We chose Macintosh for its low cost, its easy-to-use user interface and its
wide diffusion together with the availability of a lot of boards well suitable for speech signal processing.

REFERENCES

Agonigi, M. & Cioni, L. (1892) Design of a Macintosh application for speech signal processing, (Third
Eurographics Workshop on Visualization in Scientific Computing, Viareggio, ltaly, 27-29 April 1992).

Cioni, L. (1992) A complex data-base for speech signal processing, (3rd ERCIM Database Research
Group Workshop on Updates and Constraints Handling in Advanced Database Systems, Pisa, italy, 28-
30 September 1992).

Fallside, F. & Woods, W. A, Editors (1985) Computer Speech Processing, {Prentice Hall).

Korth, H. F. & Silberschatz, A. (1991) Database System Concepts, (Mc Graw Hill).

559



