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ABSTRACT: A method is described for estimating the three lowest, resonance or formant
frequencies (Fy, F, and F3) of a vocalic sound, and for tracking the temporal course of each
formant through the duration of the sound. The problem of estimating these frequencies at a
short-time frame of the speech signal is approached by spectrai matching, i.e., by analysis-by-
synthesis of hypothesised spectra. The problem of tracking such spectra over consecutive
frames is then recast as an optimum path search, with temporal constraints defined in a
Dynamic Programming framework. Both estimation and tracking algorithms hinge on the
formant-enhancement and the formant-sensitivity properties of the negative derivative, Linear-
Prediction phase spectrum. Using a moderately large dataset of ten English vowels produced
randomly by a male speaker three times in CVd and VC (C = /b, d, g/) contexts, the method
presented here is shown to yield formant-contours (the Fy and F, in particular) which are very
similar to those tracked manually by an expert phonetician. The strength of the correlations
is found to be 0.99, 0.98 and 0.71 for Fy, Fy and F3, respectively.

INTRODUCTION

An important area of research in speech science and technology concerns the phonetic interpretation
(Broad, 1972) of the acoustic, speech signal produced through the human vocal tract. Toward this
end, the (three) lowest resonance frequencies of the vocal tract, also known as the formants, are
particularly useful parameters because of the tangible acoustic link, which they provide between the
phonetic identity of a speech sound and its associated articulatory gestures. However, whilst the
speech signal is more readily observed than the articulators of the vocal tract, unsupervised formant-
frequency estimation (especially through the speech stream) is fraught with appreciable difficulties,
which are not fully resolved and thus make it difficult to automate acoustic-phonetic processing of
speech.

The time-honoured method of formant estimation is based on hand-drawn tracings through regions
of spectrograms, which display the highest concentrations of spectral energy. While formant mea-
surements using the sound spectrograph are expected to be accurate, it is clear that preparation of
spectrogram-traced formant data can easily become very laborious and even prohibitive.

Perhaps the most generally used, algorithmic approach to formant estimation consists of selecting,
on a frame-by-frame basis, the three to four prominent peaks of the Linear-Prediction (LP) magnitude
spectrum. Formant-contours are then constructed by applying some heuristic rules in order to ensure
temporal continuity and proper ordering of the individual peaks. While this approach remains attractive
owing to aigorithmic simplicity and computational efficiency, it is not aiways free from post-estimation
human intervention, nor does it overcome the problem of merged peaks, nor may it be expected to
automatically secure consistent continuity along the time course of each individual formant.

We endeavour therefore in this paper to present a more robust method (Clermont, 1991; Cler-
mont, 1988a): (1) which can be applied to determine in some error sense the hypothesised (or
candidate) spectrum that best matches the original spectrum of a given frame; and (2) which embod-
ies certain constraints aimed at objectively restricting choice of consecutive candidate spectra.
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METHOD OF FORMANT-CONTOUR PARAMETERISATION
APPROACH:

The problem of formant-cantour parameterisation (or formant tracking as better known in the literature)
of a vocalic sound is recast here as that of finding, in some error sense, the sequence of candidate
spectra which best match the original spectra through the duration of the sound. The process of
generating “candidate” or “trial” spectra per time-frame is of course reminiscent of pioneering research
by Beil et al. (1961) on the Analysis-by-Synthesis (AbS) process and the underlying concept of an
error measure associated with every candidate spectrum. if the AbS-process is carried for a sequence
of time-frames as would be the case for the problem at hand, then the resulting error measures
might be interpreted as per-frame (or local) costs. By combining local costs with some frame-to-
frame transition costs, the formant-tracking problem may then be re-defined as ihat of finding the
best set of time-sequenced candidate spectra such that some fotal cost is minimised over all time
frames. This is equivalent to solving a sequential optimisation problem, io which the technique of
Dynamic Programming (DP) is well suited (Bellman, 1957; Lee, 1989). Hence, the acronym DPTRAK
sometimes used hereafter *o refer to our formant-tracking method.

ANALYSIS-BY-BYNTHESIS and the LINEAR-PREDICTION PHASE SPECTRUM:

One elegant property of the LP-phase spectrum studied by Yegnanarayana (1978) concerns the mutual
interference of adjacent poles. The interference is atienuated in the Negative Derivative of the linear-
prediction Phase Spectrum (NDPS) which, in contrast to the LP-magnitude spectrum, consists of
additive rather than multiplicative sets of resonance curves. The NDPS may therefore be expected
to behave like a filter which de-emphasises spurious peaks and enhances true formant peaks. This
behaviour is re-interpreted as the the formani-enhancement property of the NDPS.

A coroliary of the formant-enhancement property concerns the Euclidean distance between a pair of
NDPS, which was shown (Yeghanarayana and Reddy, 1979) to be sensitive to deviations localised
only around formant-peak regions, and may therefore be interpreted as a Euclidean distance between
a paired set of actual formant peaks. In addition, the NDPS distance is functionally equivalent to
an index-weighted, Euclidean distance between a paired set of LP-derived cepstral coefficients. The
NDPS may therefore be said tc also embady a formant-sensitivity property.

In light of the properties reviewed above, the NDPS distance could then be used to indirectly estimate
formant-related similarity between entire speech sounds, as well as between selected spectral regions
of a single frame of a given seund. This further suggests the possibility of determining which subsets
of spectral peaks, or equivalently which spectra synthesised from these subsets of peaks, best match
the original spectrum of a given frame, subject to minimal influences by non-considered peaks. From
this speculation arises the concept of per-frame “simplified spectra”, which may be synthesised from
combinations of the available candidate peaks.

Two concepts are therefore put forward to achieve spectral analysis-by-synthesis on a frame-by-frame
basis. Given a set of candidate peak frequencies and bandwidths, one generates certain combinations
of three- or four-peak sequences which are, in turn, synthesised to produce our so-called simplified
spectra. A Spectral Distance Matrix (SDM) is then constructed, in which columns correspond to time
frames, and rows contain NDPS distances between simplified and original spectra.

DYNAMIC PROGRAMMING and TEMPORAL CONSTRAINTS:

The decision process inherent to a DP-optimisation is interpreted in our context to have as many
stages as there are time frames, and there will be per stage as many states as there are available
simplified spectra. The objective function at any given stage (later than the first stage) is defined
as the sum of contributions from that stage and previous ones. A coniribution is expressed as the
minimum of linear combinations of the local (or state occupancy) costs at a given stage (later than the
first one) and of the (transition) costs in associating every state of that stage to those of the previous
stage. For every confributicn a DP-pointer is retained which links a current to a previous state.

If occupancy and fransition costs are quantified in terms of a suitabie similarity measure (such as
the NDPS distance discussed earlier), then the DP-decision process may be said to minimise the
cumutated cost through an NDPS distance matrix. The optimum sequence of siates over time is
retrieved by first finding the state of the last stage at which the cumulated cost (or distance) is minimum,
and by sequentially recalling the DP-pointers to frace back the optimum path from the last to the first
stage. The formant-frequency contours are then constructed by recursive selection of the simplified
spectra pertaining to the optimum DP-path.
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ALGORITHMIC IMPLEMENTATION of the DPTRAK METHOD

SPECTRAL ANALYSIS-BY-SYNTHESIS and DISTANCE MATRIX (PART 1):

Part 1 of the algorithmic implementation of the DPTRAK method first consists of traditional pre-
processing of the input speech signal. All-poie, Linear Predictive Coding analysis is performed at
every frame, and the pole frequencies and bandwidths resulting from the polynomial root-solving form
our set of candidate formant frequencies and bandwidths (or candidate peaks in short). This prelimi-
nary analysis also involves deriving LP-cepstral coefficients, which are used to represent our so-called
original spectrum at every frame.

The pairs of candidate frequencies and bandwidths of a given set per frame are then combined, in
turn, to form four-peak sequences which are first converted into LP-autoregressive coefficients and
then into LP-cepstral coefficients (Markei and Gray, 1976: see conversion algorithms on pp. 95-98).
For a given frame, there are as many sets of the latter cepstral coefficients as there are four-peak
sequences (or equivalently simplified spectra).

Note that only crescendo sequences are considered in order to preserve the constraint that formant
frequencies are to be in increasing order on the resonance scale. Note further that, although our aim
is to estimate the first three formant peaks, the inclusion of a fourth peak autornatically enlarges our
choice of simplified spectra, and may thus be expected to improve the likelihood of finding at least the
first three peaks which best match those of the original spectrum at a given frame.

Thus, Part 1 of the algorithmic implementation yields the Spectral Distance Matrix (SDM), the rows
of which contain index-weighted cepstral (or NDPS) distances between simplified spectra and original
spectra at individual frames. The matrix has as many as columns as there are time-frames, and there
are per column as many row eniries as there are simplified spectra at every frame.

DP-SEARCH FOR CPTIMUM PATH (PART 2):

Part 2 consists of finding an optimum path through the SDM constructed at the previous stage, by
minimising a DP-cost function which combines NDPS distances local to every frame with NDPS dis-
tances between simplified spectra of consecutive frames. The local component of the DP-cost function
is given by the SDM row entries, and the femporalcontinuily component is defined in terms of frame-
to-frame NDPS distances. The further use of the NDPS distance for estimating spectral continuity
between consecutive frames is well motivated by the formant-sensitivity property described eatlier.
Accordingly, the total DP-cost function may be expected to have a strong influence on the temporal
alignment of the respective, individual peaks of consecutive spectra. The total cost function may
be described as a cumulative sum of local and frame-to-frame NDPS distances, and is expressed
mathematically as follows:

Ne
Djp = djpn + M { Dy g +alCf,y Cfpgl) for2<n <y M

where the (Ck)in and (Ck)in_1 are the LP-cepstral coefficients for simplified spectra of current and
previous frames, respectively, and where:

e j = row index of SDM.

e n = column index of SDM (also time-frame index).

e Ni = number of time frames.
» N¢ = per-frame number of combinations of N,-peaks taken q=4 at a time (Np/lai{Np — q)1]).
® dj n = local cost (NDPS distances of SDM).

® d[(Ck)js,1 , (Ck)jsn_l] = continuity cost (Frame-to-frame NDPS distances).
e D = cumulative cost.

e NDPS distance d = Z{I’ll k2 [C, - CL]Q, where (. and Cj, are a paired set of LP-cepstral
coefficients, and M is a finite number of coefficients.
Note that the total number (Nc) of four-peak combinations may be different for every frame, depending
on the number of candidate peaks available from the all-pole LP-analysis. For presentation’s sake,
however, N¢ is assumed to be the same for every frame in our mathematical formulation (Equation 1)
of the DP-cost function.
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PERFORMANCE EVALUATION of the DPTRAK METHOD
APPROACH:

The stumbling question which arises in evaluating a formant “tracker” is deciding how good the es-
timated or tracked values are. Although the method presented here uses objective measures to
determine the best matching, consecutive spectra through a vocalic sound, it will perform only as well
as can be expected within the limits of all-pole, LP-modeliing of voiced speech sounds. It is therefore
desirable to seek independent judgements of the formant values obtained automatically. One approach
considered in this study is to compare, for the same speech material, the Fy, Fy and F3 yielded by the
DPTRAK method to a reference formant set hand-edited by a human “expert” (an acoustic phonetician
in this case). The degree of proximity between the two sets may then be interpreted as a measure of
goodness of the estimated formants.

Since an important aspect of our approach to formant tracking is the use of temporal constraints to find
the best matching contours, formant-data comparison was also carried to assess globat effects of our
DP-based constraints. Toward this end, two distinct sets of computer-generated formant data were
created. DPO-contours refer to temporally-unconstrained, formant-contours which were constructed by
selecting, for every frame, the simplified spectrum closest to the original spectrum in an NDPS sense,
and then juxtaposing the so-selected simplified spectra frame-by-frame. In contrast, DP1-contours
refer to temporally-constrained, formant-contours which were obtained recursively along the optimum
DP-path of the SDM.

SPEECH MATERIAL and REFERENCE FORMANT DATA:

The reference formant data used for comparison were measured in a previous study (Broad and
Clermont, 1987) of coarticulation in English syllables. The speech material comprises ten American
English vowels in CVd and VC contexts {where C = /b, d, g/, and V is as in “beet”, “bit”, “pet”, “bat”,
“but”, “hot”, “bought”, “foot”, “boot”, “bird") produced by one adult male, native speaker of American
English. There are three repetitions of each CVd and VC syllable; the waveforms were quantised to
12 bits and sampled at 10 kHz. The vowel boundaries were determined by visual inspection of the
waveforms, followed by auditory confirmation.

The formant-frequencies F1, Fp and F4 were estimated at 11 equally spaced frames, through the
vowel interval of each syliable for a total of 1980 frames. The formant-estimation method used by the
acoustic phonetician proceeded in two steps: (1) all-pole, root solving of 14th-order (autocorrelation)
LP-analysis on Hamming-windowed frames of 25.6-msec duration, followed by (2) hand editing of
the resulting formant candidates on the basis of the estimated bandwidths, expected formant ranges,
and temporal continuity. When a formant could not be selected using these criteria, a value was
interpolated between adjacent frames.

RMS DIFFERENCES and CORRELATIONS:

The results obtained by comparing computer-generated with hand-tracked vowel formant-contours are
described in Table 1, in terms of correlations and Root-Mean-Square (RMS) differences (or errors).

In particular, the DP0- and DP1-results are summarised in the middle and rightmost columns of Table 1,
respectively. Observation of these two columns first indicates that the RMS-error is relatively much
smaller for Fy and F than itis for F5. The correlations shown in parentheses confirm that our method
fares rather well in tracking the lowest two formants with correlations near unity for F; (0.99) and
Fy (0.98), while DP-tracking of the F4 appears to be relatively less successfull with a correlation near
only 0.7. Furthermore, cross-examination of the DPO- and the DP1-results reveals an appreciable
decrease in RMS-error for Fy (18%) and F, (28%) and a much smaller improvement for F3 (3%).
These results generally suggest that 'the use of NDPS distances combined with DP-based temporal
constraints does yield a better choice of time-sequenced simplified spectra.

An interesting question now arises as to whether the RMS-errors reported above can be re-interpreted
in order to shed more light on the “goodness” of the DP-tracked formant estimates. In other words,
is the intuitively small, RMS-error of 21 Hz for DP1-tracked Fy-contours, for example, smali enough?
Or, is the relatively large, RMS-error of 342 Hz for DP1-tracked F3-contours within acceptable limits?
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(American English)
Vowel DPO-Resuits DP1-Resuits
Formant-Contours || (without temporal constraints) { (with temporal constraints)
in CVC context

7 25 Hz (0.98) 21 Hz (0.99)
I3 49 Hz {0.95) 107 Hz (0.08)
s 351 Hz (0.70) 345 Fz (0.77)

Table 1: Summary of DPTRAK performance in estimating F1-, Fy- and F3-contours of American
English Vowels (Broad and Clermont, 1987) produced in CVC context by one aduit male, native
speaker. Results are expressed in terms of RMS-errors (Hz) and correlations (shown in parentheses)
between contours yielded by the DPTRAK method and those tracked by an acoustic phonetician. input
candidate (formant) peaks for both machine and human “trackers” are the same roots of 14th-order, all-
pole LP-filtering. The DPO-results (middle column) concern temporally-unconsirained contours. The
DP1-results (rightmost column) concern temporalily-constrained contours.

(American English)
Vowel Inter-Repetition DP1-Results

Formant-Contours Dispersion (within IR-dispersion)

in CVC context

P 25 Hz 2 Hz (99%)
Fy 52 Hz 4 Hz (98%)
Fs3 75 Hz 4 Hz (80%)

Table 2: Summary of DPTRAK (DP1-process) performance (rightmost column) in relation to inter-
repetition dispersions (middle column). Adjacent to RMS values (Hz) are shown in parentheses the
corresponding percentages of differences (between DP1-contours and hand-tracked formant-contours)
which lie within the respective inter-repetition dispersions for F{, Fo and Fj.

ERROR ANALYSIS within INTER-REPETITION DISPERSION:

One approach to re-interpreting the RMS-errors discussed thus far is fo examine them in relation to
the dispersion across the three repetitions of the hand-tracked formant data, for one can hardly expect
to overcome the limits of measurement noise and random variations arnongst repetitions of the same
utterance. The overall Inter-Repetition (IR) dispersion is defined, for each formant, as the square root
of the pooled inter-repetition variance for a given vowel. If the DPTRAK method was exact for the
population-mean contours, then the expected RMS-error against the hand-tracked data would be of
the order of the IR-dispersion. The following questions can then be addressed with the IR-dispersion
as a baseline measure: (1) how many of the differences between DP-tracked and hand-tracked vaiues
of the Fq, Fy and F3 lie within the spread of their respective IR-dispersion?; and (2) what is the global
RMS-error for that subset of the DP-tracked formant values which differ from the hand-trackec ones
by less than the IR-dispersion?

The results obtained within respective IR-dispersions of Fy, F, and F4 are summarised in the rightmost
column of Table 2. One can observe that nearly all the differences between DP1-tracked and hand-
tracked Fy- (99%) and Fy-contours (98%) lie within the spread of their respective IR-dispersions. In
addition, the corresponding RMS-errors (2 and 4 Hz, respectively) clearly indicate that the DPTRAK
method is in nearly perfect agreement with the human “expert”. In contrast, only 80% of the differences
for F3 do not exceed the limits of the IR-dispersion, thus confirming that there is a definite discrepancy
between the two tracking methods as far as the third formants are concerned. Until further investigation
is conducted in a future study, the DPTRAK method is retained to be in error 20% of the time in
estimating Fs.
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CONCLUDING DISCUSSION

A method has been herein described for automatically tracking the temporal course of the three lowest,
resonance frequencies measured through the duration of vocalic sounds. The distinctive aspect of
the method is perhaps better portrayed in terms of the judicious use of the formant-enhancement and
formant-sensitivity properties of the LP-phase spectrum, which appears to have received less attention
than the now traditional, yet more limited LP-magnitude spectrum.

Although the formant-tracking problem has been quite independently (Talkin, 1987) recast in a DP-
framework similar to that described here, our approach differs markedly as far as the local and transition
costs associated with the DP-search are concerned. In this regard, the NDPS embodies very desirable
properties, which make it possible to indirectly estimate the proximity between a paired set of spectral
peaks, both on a per-frame and on a frame-to-frame basis. Thus, while the DP-cost function in our
method is simply, yet adequately expressed in terms of index-weighted cepstral (or NDPS) distances,
Talkin's local component of the cost function, for example, is defined as a weighted sum of the very
bandwidths and frequencies of the candidate peaks. The method presented here would seem therefore
to be more attractive and erhaps more robust, as deviations between paired sets of spectral peaks
are autornatically monitored in our DP-framework which integrates the properties of a more enhanced
LP-spectral representation.

Our evaluation of the formant-tracking method described in this paper attests to a satisfying perfor-
mance on a moderately large amount of vowel data. Comparison of DP-tracked with hand-tracked
formant-contours indicates that the method may be expected to fare well in estimating especially the
F1- and F,-contours of vocalic sounds. The relatively less successful results abtained for F3 are not
yet fully understood, although preliminary examination of the errors seems to indicate that it is the
back vowels which are most affected. Further study is therefore warranted in order to overcome the
apparent limitation of the DPTRAK method in tracking Fy-contours of certain vocalic sounds. Notwith-
standing this limitation, the method represents a step forward as it may be expected to automatically
yield reliable contours of Fy and Fo, which are generally considered “the most characteristic two
features of vowels” (Pols et al., 1969).
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