HIDDEN CONTROL NEURAL NETWORKS AND NEURAL PREDICTION
MODELS FOR THE TASK OF SPEAKER VERIFICATION

Anthony Kelly and Eliathamby Ambikairajah

Speech Research Group
Department of Electronic Engineering
Regional Technical College, Athlone, Ireland

ABSTRACT ~ The Hidden Control Neural Network (Levin, 1990) and the Neural
Prediction Model (Iso & Watanabe, 1990) were recently proposed as speech
recognition models. The models are based on speech paitern prediction by multi-
layer perceptrons. Each model was tested, by its proposer, with speaker
independent digit recognition experimenis. in both cases recognition accuracies in
excess of 99% were achieved. This paper describes the use of both the Hidden
Control Neural Network and the Neural Prediction Model to perform the task of
speaker verification. The vulnerability of each mode! to changes in speech
parameters over time is also investigated. A set of sixty utterances from one true-
talker and six impostors, collected over a period of six months, is used fo evaluate the
speaker verification performance. The Neural Prediction Model based system yields a
speaker verification accuracy of 100%, however, this falls to 90% for the Hidden
Control Neural Network based system. Finally, a muRi-transputer implementation of
the Neural Prediction Model system is described. This system uses five transputers
and operates.in real-time.

1. INTRODUCTION

Multi-Layer Perceptrons (MLP's) are usually employed as pattern discriminators in speech
applications. However, there are a number of practical problems in applying MLP's as discriminators.
Firstly, the MLP discriminators require a very large training data set to learn complex discrimination
hyperplanes for a large number of classes. Secondly, if new classes are added, discriminators in the
system must be retrained using a data set for all classes. Finally, it is difficult to absorb temporal
distortion of speech patterns and to deal with continuous speech.

Levin {1990). proposed a system, based on MLP frame predictors, which predicis speech patterns.
The system is called a Hidden Control Neural Network (HCNN). Levin tested the HCNN with multi-
speaker connected digit recognition experiments. A very high word accuracy of 99.3% was reported.
Another system based on MLP frame predictors was proposed by Iso and Watanabe (1990). The
system is called a Neural Prediction Model (NPM); it was tested with Japanese digit speech
recognition. The results of these experiments showed that the NPM based speech recognition
system outperformed conventional systems; a recognition error rate of only 0.2% was achieved.

A Neural Prediction Model to perform the task of speaker verification has been implemented by
Ambikairajah and Kelly (1992). This paper compares a Hidden Control Neural Network based speaker
verification system with the Neural Prediction Model based system.

Layered neural networks, like the MLP, are connectionist models that implement a non-linear
parametric mapping from the input space to the output space. As such, these models are especially
applicable for the approximation of non-linear multivariate functions. A network with one hidden layer
of sigmoidal units can approximate, arbitrarily well, any continuous function. However, being a static
model, a layered neural network is not capable of modelling systems with an inherent time variability,
such as the speech production system. Both of the speaker verification systems described in this
paper are based upon speech pattern prediction by MLP's. To overcome the problems associated
with the time-varying nature of speech production, the neural network mapping must, somehow,
change with time. The Hidden Control Neural Network and the Neural Prediction Model achieve this in
different ways.

2. MODEL DESCRIPTIONS

For a particular speaker both the Hidden Control Neural Network and the Neural Prediction Model are
constructed as a state transition network. For the HCNN each state is associated with a unique control

508

input, which can be seen as modulating the MLP mapping. For the NPM each state is associated with
a different MLP predictor. The state transition configuration of these models is similar in form to the
Hidden Markov Model.

Figure 1. HCNN/ NPM State Diagram.

Figure 1 shows a state diagram for what could be either an N state HCNN or an N state NPM. For the
HCNN case N is the number of unique control symbols that are presented to the model, while in the
NPM case Nis the number of MLP's in the model.

2.1 Hidden Control Neural Network

A speaker modet in HCNN is an MLP predictor. The MLP output is a frame prediction. The input
consists of a number of previous frames along with a number of control inputs. The number of control
inputs specifies the number of states that are in the HCNN model. Let frame vector tbe represented
by a¢ and the HCNN prediction for frame vector t be denoted by a%. i Sgis the control symbol (Levin,
1990) associated with frame t and the frame prediction is based on two previous frames then ay=
f(at-1, 8g.2, Sg), where f(x) is the MLP mapping. The difference between the predicted frame
feature, &%, and the actual feature, &y, is defined as the prediction residual. This residual can be
regarded as an error function for the model training, based on the back-propagation technique.

The set of control symbols is chosen such that each symbol is equidistant from each other symbol. For
an N state HCNN there are N control inputs and the possible control symbols are as follows.

Qg = 1 0 0 0
Q2 = 0 1 0 0
ey - o o o .. 1

The control symbol may be seen as modulating the MLP transformation, f(x), such that it selects one
of a set of possible invariant sub-transtormations, f1(x), f2(x), ..., iN(x).

Figure 2 shows a HCNN system that bases its frame prediction on two previous frames.

P‘“ﬁ—] 5 Scroll utterance
e | Frame | IFrameM ” Frame 1 Iq—(hmughwindow

i

] <€ Scrolt utterance
through window

Squared { gy, Squared

i £ Prediction Prediction

R Residual . . Residuals

$| ez s i
Control Sym_bM j
inputs Prediction
for Frame i
Figure 2. HCNN Model. Figure 3. NPM Model.

2.2 Neural Prediction Model

The Neural Prediction Model consists of an array of MLP predictors. The hidden layer nodes have a
sigmoidal transfer function, while the output nodes are linear. The MLP predictor outputs a predicted
feature vector, a*, using the preceding speech feature vectors, @j.r, ... , @¢.1, as inputs. The
subscripts represent frame numbers of speech feature vectors. The symbol T represents the number

of input speech feature vectors used for prediction. The difference between the predicted frame

509

feature, a, and the actual feature, ay, is defined as the prediction residual. This residual can be
regarded as an error function for the MLP training, based on the back-propagation technique.

Figure 3 shows a Neural Prediction Model (Ambikairajah & Kelly, 1992) with N MLP predictors. In this
case each predictor predicts a frame given two previous frames.

3. ALGORITHMS

The testing and training algorithms for both the HCNN and the NPM are essentially the same, as such,
they will be treated together in this paper. The main component of these algorithms is the
segmentation process. This process involves assigning each frame of an uiterance to a particular
model state such that the prediction residual for the utterance as a whole is minimised. Recall that a
state in an NPM is associated with a particular MLP and that a state in a HCNN is associated with a
particular control symbol.

3.1 Testing Algorithm

According to the aigorithm described below, for the prediction of a test utterance by an N state HCNN
or NPM, input speech is divided into N segments and the ith segment (1 </ < N) is predicted by the
model in state /. The optimal segmentation of the input speech is determined by minimising the
accumulated prediction residual, D,

T
D=min 3 jja*t (n(1)) - az | 2,
{n(t)} t=1
where || . || is an Euclidean norm of a vector, T is the number of frames in the utterance and a“g(n)

represents feature vector ¢, predicted by the model, either NPM or HCNN, in state n. For the NPM, n(t)
determines which MLP predictor is assigned to the prediction at frame ¢, for the HCNN, n(t) determines
which control symbol is used for the prediction at frame t. It must satisfy the following constraints:

n(t)=1,
nT) =N,
nt)=nt-1)ornt-1)+ 1, (1 <t<T).

Under these constraints the minimisation can be accomplished by use of dynamic-programming. The
sequence {n(7), ..., n(T) } represents the utterance trajectory through the model states.

Figure 4 shows a possible segmentation, n(t), of a 10 frame utterance using a 4 state model, either
HCNN or NPM.

4

Y =(1,223333444)

Model State
—t ny w

i 2 3 4 5 6 7 8 9 10
Frame number, t

Figure 4. Example utterance segmentation with HCNN and NPM.

The process used to get the optimum segmentation, n*(t), is the same as that described by
Ambikairajah and Kelly (1992). This process is based on dynamic programming and back-tracking
techniques.

it was found that if the accumulated prediction residual is divided by the sum of the squares of each

teature component in the utterance, then the resultant parameter, E, is the best one on which to base
the speaker verification decision:

510

;
> (ar- a2
=R

T P ’

L Qaf

t=1 j=1
In the above expression Tis the number of frames in the utterance, agis frame t, a* is the model
prediction for frame ¢, component j of frame vector tis agand p is the dimensionality of the feature
vector.

3.2 Training Algorithm

The training goal of this type of system is to find a set of MLP predictor weights, which minimises the
accumulated prediction residual for a training data set; for a speaker verification system the training
data set is a collection of password utterances from a certain speaker. The objective function for the
minimisation is defined as the average value for accumulated prediction residuals for all training
utterances, D*:

M
Dr=42 % D(m),
m=1

gl

where M is the number of training utterances, and D(m) is the accumulated prediction residual for the
m-th training utterance. The optimisation can be made by an iterative procedure, combining dynamic-
programming and back-propagation techniques. The algorithm is as follows:

. initialise all MLP predictor weights to initial random values between zero and one (with
the NPM there are many MLP's but with the HCNN there is only one MLP);

* set initial training utterance segmentations, {n*(t) }, by following the dynamic-
programming procedure described in the previous section:

® repeat the following procedures for all training utterances (1 <m < M) and until
convergence;

° correct the MLP weights by back-propagation along the optimal trajectory {n'(t) }, where
desired output a; is assigned to actual output a*s(n) for the model in state n*(t);

. compute the accumulated prediction residual using dynamic-programming and
determine the optimal trajectory {n*(t} } using its back-tracking.

4. EXPERIMENTS

This section describes two experiments, which are carried out to investigate the ability of Hidden
Control Neural Networks and Neural Prediction Models to perform speaker verification. In each case,
eight state models are used. That is, the HCNN's have eight distinct control inputs and the NPM's
consist of eight MLP predictors. The password utterance is the phrase “SIX-THREE-NINE”. H is
spoken with a natural accent and the individual digits may be isolated or contiguous.

The time domain speech signal is band-pass filtered between 60 Hz and 3.4 kHz and sampled at 8
kHz. It is then analysed by a 32 ms frame window. As a feature vector for each frame the first 8 Mel
Frequency Cepstral Coefficients (MFCC's) are extracted, (¢1, 2, ..., cg).)

The first experiment is a preliminary investigation using a refatively small data set recorded at a single
recording session. The results of this experiment give a general indication of how HCNN and NPM
based speaker verification systems perform, but they give no indication of the systems' robustness to
changes in people's speech parameters over time. To investigate this property a second experiment
is carried out. In experiment two 60 true-talker utterances and 30 impostor utterances are collected.
Half of the utterances are collected at one recording session and the other half are collected at a
recording session six months later. The results of this experiment show whether or not the HCNN and
NPM based speaker verification systems are vulnerable to changes in speech over time. In both
experiments all of the utterances come from male speakers.

511

4.1 Experiment 1

Seventy password utterances are collected at one single recording session. The breakdown for the
utterances of experiment one is as follows:

Utterances | Training Testing
True-Talker 50 40 10
Impostor 20 - 20

The impostor data set consists of the utterances of four separate people.

NPM Experiment 1 HCNMN Experiment 1
010
0.0f
a &
o8
a _ 0.05{ True-Talker 8 2
g True-Talker @ L 8 Utterances] g, @
3
2 ooef Utterances a ® ng 0.004 <@ & [gl
2 > B B 9, Bag 2 LI B
& =
E ab L 5 £ B .m
g 004r Threshokd 3 003 ®
8 a5 Region 3 B om %
a e &R o
- 8
0.02 [} 0027 8 impostor Utterances
Impostor Utterances @
0.00 L o & 0.0t Y T Y
o 10 20 30 40 0 10 20 30 40
Test Utterance Number Test Utterance Number

Figure 5. Test Results from Experiment 1.

Figure 5 shows the results of experiment one. It is seen that, in the NPM case, there is a large gap
between the prediction residual levels for true-talker utterances and those for impostors, however, in
the HCNN case the gap is almost non-existent. Nonetheless, in both cases it is possibie to choose a
threshold such that 100% speaker verification is possible with the test set. On account of the nature
of the training data these systems could not be expected to perform well if the true-talker's speech
changed much from the time of the recording session.

4.2 Experiment 2
One hundred password utterances are collected. Haif of the utterances in each class are collected at

one recording session and the other half are collected at a recording session six months later. The
breakdown for the utterances of experiment two is as follows:

Utterances | Training Testing
True-Talker 70 40 30
impostor 30 - 30

The impostor data set consists of the utterances of six separate people.

Figure 6 shows the results of experiment two. The gap that was present in the NPM case in
experiment 1 has now disappeared. However, it is still possible to choose a threshold such that 100%
speaker verification is achieved with the test set. This model is quite robust and unlike the model from
experiment one it recognises true-talker utterances recorded at different times. The performance of
the HCNN based speaker verification system has deteriorated even further, it is impossible to select a
threshold that will result in 100% speaker verification with the test set. Indeed, it is seen that the best
choice of threshold level results in a speaker verification accuracy of only 90% — six false acceptances.
This reduction in performance, in the cases of both the NPM and the HCNN, is to be expected as in
experiment two the models are trained to absorb the time-varying nature of the speaker's utterances
as well as the unique speaker dependent aspects of the speaker's speech.

512

20 30 40

Test Utterance Number

50 80

70

0

020 3
Test Utteranc

40 50
e Number

NPM Experiment 2 HCNN Experiment 2
007 - o 0.10
0.6 & & - e
g 008 * 5 " " 3 - S g" Falsely
2 8 G 0067 irue- faiker 8y Accepted
& True-Taiker < Utterances 8 = Imposotrs
0.04] o Pu = % & 0 a8 8 P
& Utterances E] [] B
£ = 3 0044 o 2 5 =
g ooy s o & E T 8, - N
Ly — e
002p s = :Eg&'!g é”ﬁ impostor Utterances % Impostor Utterances
001 s 2 4 4 0.00 7 7 T T T 7

Figure 6. Test Results from Experiment 2.

Prior to training the feature vectors for each utterance are linearly scaled to lie in region between zero
and one. This prevents numerical problers during training. A learn rate of 0.05 and a momentum term
of 0.9 are used during training.

5. TRANSPUTER IMPLEMENTATION

Both of the speaker verification systems described in this paper are quite computationally intensive.
Thus, without using a very high-performance computer, it is impossible to implement them in real-time.
One soiution to this is 10 implement the system using a paraflel prograrmming approach.

The Neural Prediction Modei based system has been implemented on a transputer board, which
consists of five T80O transputers. The implemented system reads a sampled utterance from disk and
performs autornatic end-pointing. The utterance is then analysed on a frame by frame basis and the
feature vectors are extracted, this process easily lends itseif to a paraliel implementation on account of
the repetitive nature of the frame by fame analysis. The NPM speaker verification algorithm, described
in section 3, is then impiemented. Finally, the prediction residual is compared with the pre-set
threshold and the speaker verification decision is made. Figure 7 shows a process diagram for the
transputer implemented NPM based speaker verification system.

Processor 3

Feature
Extraction

Processor 4

“Feature
Extraction

Feature
 Extraction

Processor 5

Processor 1

1o N\
Process /-

~ Feature ™
\ Extraction

Processor 2
Figure 7. Process diagram for tranisputer implementation of NPM speaker verification system.

The total time from reading the speech samples to making the speaker verification decision varies
between one and two seconds, depending on the length of the spoken password uiterance. For this
type of application this system can be considered to be a realtime implementation of a speaker
verification system. The same system has also been implemented on a high-performance personal
computer and the implementation time was found to be between 10 and 20 seconds, which cannot
be considered a real-time implementation.

513

