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ABSTRACT - Recurrent Neural Networks (RNN) have shown promise in the area of automatic
speech recognition. In this paper we examine the application of RNN architectures to the problem
of text dependent automatic speaker identity verification.

INTRODUCTION

A recurrent neural network architecture contains feedback as well as feed forward connections. It is hy-
pothesised that the presence of feedback connections will enable RNNs to perform better than multilayer
perceptrons (MLPs) when the input is a dynamical time series, such as in speech processing.

The standard backpropagation algorithm used to train MLPs must be modified in order to train RNNs. There
are two techniques for modifying the algorithm: in the first technique the output of a node is calculated at
time ¢ by using the outputs at time ¢ — 1 from the connecting nodes. This circumvents the problem caused
by a recurrent connection from the same node. The value on the recurrent connection used in calculating
the weighted sum at time ¢, is the output of the same node from time t — 1. This technique is referred to as
backpropagation in time, or, unfolding of the network in time. It was first proposed by Rumelhart, Hinton &
Williams (1986). Variations of this algorithm have been used by Watrous & Shastri (1987) and by Morgan
& Scofield (1991), in speech recognition.

The second modified backpropagation algorithm is called recurrent backpropagation (RBP) . It was proposed
independently by Pineda (1987 & 1989) and Almeida (1987 & 1988). in RBP the outputs at a particular time
instant are calculated by relaxing the network by an iterative numerical method. The process is essentially the
solution of a set of simultaneous non-linear equations. The weight changes are then calculated by gradient
descent. An efficient method of calculating the weight changes is to form a transposed error propagation
network by:

1. Reversing the connections of the original network.
. Removing the original inputs.

. Using the error at each node as the new inputs.

s N

. Replacing the sigmoid transfer function at each node with a linear transfer function which is the value
of the derivative of the sigmoid function of the original network.

The new transposed network is also relaxed and the values of the outputs are used in calculating the weight
changes.

In RBP, the outputs of the net at a time instant are independent of the outputs at any previous time instant
and depend only on the current inputs. Hence a network is not trained on an input sequence, but only on
a particular set of input values. If a sequence of input sets is presented to the net, the outputs for each set
are independent and will not vary with reordering of the input sets. In this sense, an RNN trained with RBP,
offers no advantage over a multilayer perceptron

In contrast in the backpropagtion through time algorithm, the state of the network at any time instant
depends on the states at all previous times. A sequence of inputs, presented in a different order will produce
a different output sequence.

In this paper, time dependence was buiit into RNNs trained with RBP by using the stored outputs of nodes
from previous time steps as inputs at each time step.
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Figure 1: Recurrent Neural Network Architecture

These modified RNNs were used for text dependent speaker identity verification using isolated digit utter-
ances. A comparison was made of the performance of two RNN architectures and two multilayer perceptrons
trained on the same data. One of the RNNs and one of the MLPs had time delayed inputs as described
below. .

METHOD

Feature Extraction

The speech data consisted of isolated digit utterances. These were sampled at 16 kHz and blocked into
32 msec frames, overlapped by 3/4 of a frame. The features extracted from each Hamming windowed
frame were the first 10 LPC cepstra, delta cepstra and delta delta cepstra (30 features). Input values were
normalised to between -1 and 1 and then multiplied by a gain of 50. The normalisation procedure was the
same as that used by lso and Watanabe (1990) and was with respect to the mean and range of a feature
over all frames in a template according to the formula: (x — mean)/range

Network Architecture

Four variations of a 22 node network were investigated. Each network had a 2 node output layer and a
20 node hidden layer. Each output node had trainable connections from each node in the hidden layer
and each hidden node had trainable connections from each of the 30 inputs. Each of the 22 nodes had a
trainable connection from a constant threshold of value 1. All nodes had sigmoid transfer functions. The
nets grouped into two pairs, one pair with a single recurrent connection on each hidden node and the other
without. Within each pair one net had memory inputs and the other did not. The memory inputs consisted
of the output values of the same node at the four preceding time steps. There were trainable connections
on each memory input. The configuration for a network with a single recurrent connection on each hidden
node and two memory inputs is shown in figure 1.

Training Method

The training scheme used was similar to that used by Ogiesby and Mason (1990) to train a multilayer
perceptron for speaker identification. A separate net was trained for each digit for each speaker. The
training data consisted of 36 templates from two equal groups: templates from the specified person (6
different templates repeated 3 times) and templates from a rejection group ( 6 different templates from
each of 3 speakers). The templates from the target and rejection sets were alternated in the training set.
The supervised learning method was used, with one output node being trained to give a rising exponential
output sequence and the other to give a falling exponential sequence, to templates from the target group.
The supervisory desired output patterns were reversed for the rejection templates.
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Separate nets were trained for each of the ten digits for each of ten speakers. For each target speaker, the
rejection set of three speakers was chosen randomly from the set of nine other speakers.

Testing Methods

To calculate false rejection error rates, twelve utterances of each digit, for each of the ten speakers were
used. To calculate false acceptance error rates, a total of 237 utterances of each digit, from 34 speakers were
used. The 237 utterances were comprised of 18 each from 9 speakers and 3 each from 25 other speakers.
The utterances used in testing were different from those used in training.

The networks were tested by applying test templates and measuring over the sequences the mean output of
the target node. The error rates were determined by combining the results for all ten digits .

RESULTS

[ FA FR |

[[SPKR__ | RNME | MPME | RNNM | MPNM | RNME | MPME | RNNM | MPNM |
A 42] 34 00 00] 83] 333 167] 167
B 13] 00| 00 00| 50| 41.7] 33.3] 500
C 08 04| 00 0.0 167 167 333| 4L7
D 0.0 7] 00 00 00 0.0 0.0 0.0
E 24 127 245 | 168 167 | 250] 167 167
F 5.1 38 04 21| 00| 167 00 0.0
G o8] 08| 04 047 0.0 0.0 0.0 0.0
H 34 51 08 17| 333] 250] 167 250
[ 10.1 25| 131 8400 83 0.0 0.0
J 04 00| 04 08| 250| 25.0] 167] 167

[AVERAGE| 48] 1251 40 3.0 125] 192] 133] 167]

Table 1: 4-Way Comparison of Percentage False Acceptance/Rejection
Table 1 shows the results of the first experiment performed. The abbreviations used are:

o SPKR Speaker

o RNME Recurrent Net with Memory

e MPME Multilayer Perceptron with Memory
o RNNM Recurrent Net, No Memory

e MPNM Multilayer Perceptron, No Memory

The table gives a comparison of the false acceptance and false rejection error rates between the ten speakers
used and between the four architectures tested. The thresholds used to calculate error rates were fixed for
all speakers and networks. A marked variation in performance between the speakers was observed.

Figure 2 is a plot of the false acceptance rate averaged over the ten speakers against the corresponding
false rejection rate for the same threshold . The nets were trained for 40 epochs . The error rates were
determined by combining results from 10 utterances. There were small differences between the performance
of the different architectural variations trialed. The best results were obtained for the muitilayer perceptron
while the worst were obtained for the multilayer perceptron with memory.

Figure 3 shows a comparison of the error rates for 15, 25 and 40 epochs of training for a single architecture
- the recurrent net with memory. A decrease in error rates was obtained with increasing training period and
it was unclear from the data whether or not the optimal training point was reached.
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