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ABSTRACT - This paper describes a speaker adaptation method called Vector Field Smooth-
ing (VFS) for a Hidden Markov Network (HMnet) generated by the Successive State Splitting
(SSS) algorithm, and shows experimental results of speech recognition for multiple input
speakers. The VFS method can accurately adapt a standard speaker’s HMnet to the input
speaker’s HMnet with a limited amount of training samples because of its “smoothing” mech-
anism for transfer vectors. By using this method, remarkable improvements in the continuous
speech recognition rates have been obtained.

INTRCDUCTION

In our quest for accurate speech recognition, we are making a study of speech recognition methods
using phoneme-context-dependent Hidden Markov Models (HMMs).

To model precise phoneme-context-dependent HMMs, we have developed a Successive State Splitting
(SSS) algorithm (Takami etal., 1992). The SSS algorithm can simultaneously and automatically optimize
all items of a model unit, the model architecture and the model parameters with a maximum likelihood
criterion, and can generate an efficient network of phoneme-context-dependent HMMs called the Hidden
Markov Network (HMnet). With this phoneme-context-dependent approach, the HMnet can achieve high
speech recognition performance even when a single Gaussian density distribution is used for each output
probability density distribution. Moreover, since each state of the HMnet is efficiently shared among
several different allophone models, the total amount of free parameters of the HMnet is less than that of
existing mixture Gaussian density phoneme-context-independent HMMs.

The above advantages of the HMnet are especially effective for model re-estimation such as speaker
adaptation where the amount of training samples for adaptation is limited, making it difficult to adapt a
lot of model parameters.

An effective speaker adaptation method called Vector Field Smoothing (VFS) has also been developed
at ATR (Hattori et al., 1992, Ohkura et al., 1992). In this method, a speaker adaptation problem is
formulated for elastic conversion of the model parameter field. Using this method, standard speaker’s
HMMs can be accurately adapted into the input speaker’s HMMs with fewer training samples.

Recently, we tested the total performance of the HMnet for multiple speakers’ utterances by applying the
VF8 method to the HMnet.

In this paper, we explain the principle of the HMnet and the SSS algorithm, the mechanism of the VFS
method, and show the continuous speech recognition experimental resuits for multiple speakers obtained
by combining the speaker-adapted HMnet and a phoneme-context-dependent LR parser.

PHONEME-CONTEXT-DEPENDENT PHONE MODELS

It is known that speech recognition using phoneme-context-dependent HMMs is an effective approach
for achieving high speech recognition performance despite the variations in feature parameters due
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to differences in phoneme contexts (Sagayama, 1989, Lee et al., 1990). On the other hand, when
the number of models becomes larger by classifying each phoneme context class into more precise
divisions, the amount of free parameters increases. Therefore, it is difficult to stochasticaily estimate
accurate phoneme-context-dependent HMMs with limited training samples. To overcome this problem,
it is important to reduce as much as possible the number of useless free parameters from each model
and to efficiently obtain the information on training samples with a smailer number of free parameters.

To generate accurate phoneme-context-dependent HMMs, we proposed a Successive State Splitting
(SSS) algorithm (Takami et al., 1992). By using the maximum likelihood criterion, the SSS can simuita-
neously and automatically optimize the foliowing three items which are important to construct phoneme-
context-dependent HMMs:

e the model unit, i.e. the set of phoneme context classes,

o the model architecture, i.e. the number of states per model and the architecture of state sharing,

e the model parameters, i.e. output probability density distributions and state transition probabilities.

Using this algorithm,-an efficient network of phoneme-context-dependent HMMs called the Hidden Markov
Network (HMnet) is generated (Takami et al., 1992),

Below, the SSS algorithm and the HMnet are described briefly.

Successive State Splitting (SSS) Algorithm

The concept of SSS is to successively make each model more precise by iterating the split of a proba-
bilistic statistical signal source, i.e. a hidden Markov state, into either a phoneme contextual domain or
atemporal domain based on the maximum likelihood criterion.

However, to achieve this concept directly, it is necessary to evaluate all possible combinations. Specif-
ically, this implies determining in which state and in which domain a split can achieve the maximum
likelihood after actually generating all possible networks. Such a huge computation is not practical in
terms of the present computer’s capabilities.

Consequently, in the actual algorithm, the following two approximations have been introduced:
o .at each iteration, the state having the largest output probability density distribution is determined
as the state to spilit,
e the output probability density distribution of each state is formed as a two-mixture Gaussian density
distribution, and when a state is split, each of the two Gaussian density distributions of the original
state is distributed to one of two new states.

By these approximations, the state to split and the output probability density distributions of the new
states can be determined without any training process. As a result, a great amount of computation has
been reduced. Figure 1 shows the principle of SSS.

Hidden Markov Network (HMnet)

The HMnet is a network of multiple hidden Markov states, and each state has the following information:
« state index,
s acceptable contextual class,
e lists of preceding states and succeeding states,
e parameters of the output probabitity density distribution,
e State transition probabilities.

438



initial model Select a state to split

20
O

Split in the temporal domain

JANYANANYAN Split in the contextual domain

¥
I Select the best splitting domain ]
1]

IS NZNNEN

Change of each distribution Re-training of the mode|
Figure 1: The Successive State Splitting algorithm

In the HMnet, if a phoneme context of a sample is given, the model corresponding to the context can
be determined by concatenating several states, each of which can accept the context, by applying the
restrictions of the preceding state list and the succeeding state list. Since this model is equivalent to a
common HMM, we can use the forward-pass algorithm to calculate the likelihoods for input samples as
well as for common HMMs.

SPEAKER ADAPTATION BY VECTOR FIELD SMOOTHING METHOD

Since each output probability density distribution of the HMnet is a single Gaussian density distribution,
it can be expected to achieve effective speaker adaptation even using a very simple method, e.g. the
re-estimation of only the mean vector of each Gaussian density distribution.

In actuality, however, the mean vector of a state corresponding to each phoneme-context not appearing
in the training samples can not be adapted. Moreover, adapted mean vectors include some estimation
errors resulting from a small amount of training samples.

To overcome this problem, a speaker adaptation method called Vector Field Smoothing (VFS) was de-
veloped at ATR (Hattori et al., 1992) (Ohkura et al., 1992). This method can simultaneously perform
both estimation of the mean vectors not adapted due to the lack of corresponding training samples and
correction of the estimation errors of adapted mean vectors by transfer vector smoothing with a spatial
filter.

The VFS algorithm consists of the following two steps:
1. calculation of transfer vectors,
2. smoothing of transfer vectors.

Below, the details of each step are shown.

Calculation of Transfer Vectors

In the first step, to obtain the adapted mean vectors, the mean vectors of each output probability density
distribution are re-estimated by embedded training with the input speaker’s training samples and the
information from their phonetic transcription.

The embedded training is performed using the Baum-Welch algorithm. In this training, only mean vectors
are re-estimated by fixing both the variance vectors and the state transition probabilities.
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Here, the transfer vector for the output probability density distributions of state i is calculated by Eq.1.

Al = @' -, (1)

i: the stateindex ,
Afi; o thetranster vector of the distribution of state :
(if the distribution of state ¢ has not been adapted, Aji; does not exist) ,
Zi - the mean vector of the original distribution of state 7,
fi;' . the mean vector of the adapted distribution of state 7 .

Smoothing of Transfer Vectors

In the next step, the transfer vectors for the adapted mean vectors are smoothed using a spatial fitter-
ing technique. This is to estimate mean vectors that have not been adapted since their corresponding
phoneme context had not appeared in the training samples, and to correct the estimation errors of mean
vectors resulting from a small amount of training samples.

The smoothing is performed using Eq.2, and the final mean vector ﬁi for every state i can be calculated.

K

ﬁi = ﬁi+ZAﬁc(k)wic(H s
k=1
K
vy = ety 2
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L
dy = > (pa—p)loh
I=1
where,

i; 1 thefinal mean vector of the distribution of state i ,
K : the number of neighborhoods ,
ca) :  the k — th neighbor state index of state i
(it Afi; does not exist, j is not included in the candidates of )
A the smoothing rate ,
L: the parameter dimension ,
wui o thel—th mean value of the original distribution of state 7 ,
o?: thel—thvariance value of the original distribution of state i .

The smoothing rate X is a variable to control the strength of the smoothing, and corresponds to the
window width of the spatial filter. Stronger smoothing is possible by increasing A.

CONTINUOUS SPEECH RECOGNITION EXPERIMENTS
ATREUS/SSS-LR Continuous Speech Recognition System

To test the performance of our methods, continuous speech recognition experiments were carried out us-
ing our continuous speech recognition system called “ATREUS/SSS-LR” (Nagai et al., 1992). This sys-
tem is constructed by combining an HMnet-based phoneme verifier and a phoneme-context-dependent
LR parser.

The phoneme-context-dependent LR parser is an effective parsing algorithm also used at ATR for driv-
ing phoneme-context-dependent phone models (Nagai et al., 1991). This parser can efficiently grow
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the parsing tree by predicting phonetic triplet hypotheses one after another according to the grammar
constraints.

This system has been found to achieve the highest performance for speaker-dependent phrase recog-
nition among many systems developed at ATR.

Another advantage of this system is that the recognition processing can be performed with a small amount
of computation. Since the HMnet represents accurately various acoustic fluctuations caused due to the
differences in the preceding or succeeding phonemes, i.e. phoneme contexts, the correct candidates
tend constantly to be higher in rank in the parsing tree. Therefore, high recognition rates can be ob-
tained with a smaller beam width in the beam search process than that used in the phoneme-context-
independent approaches. Moreover, the output probability for each distribution itself can be calculated
with a small amount of computation because of both the simplicity of each output probability density
distribution and the small amount of total free parameters.

The continuous speech recognition experiments for multiple input speakers noted in this section were
performed applying the aforementioned speaker adaptation method to the HMnet used in the existing
“ATREUS/SSS-LR” speaker-dependent continuous speech recognition system.

Experimental Conditions

Table 1 shows the experimental conditions.

Table 1: Experimental conditions

recognition task conversational sentences uttered phrase by phrase

input speakers 2 males (MHT, MXM) and 1 female (FSU)

standard speaker 1 male (MAU)

acoustic analysis 12kHz—~16bit sampling, 20ms Hamming window, 5ms frame period
feature parameters 34 dimensional vector (fogpow+cep(16)+A logpows+ Acep(16))

samples for adaptation || top N words of phonetically balanced 216 words (N : 10, 25, 50, 100)
state number of HMnet || 600 (1688 different allophonic HMMs are represented)
neighborhood count 6

smoothing rate A 10.0, 20.0, 30.0
grammar 1035 words, 1407 rules, phoneme perplexity 5.9
beam width 256

Recognition Experimental Results

Table 2 shows the recognition experimental resuits. In this table, the phrase recognition rates are ob-
tained using the smoothing rate X capable of achieving the best recognition rates for all speakers in
average.

By using the VFS speaker adaptation method, remarkable improvements in recognition performance
were achieved even when the differences in the feature parameters between speakers seemed to be
large, such as between male speaker MAU and female speaker FSU.

It was also found that the smoothing rate A capable of achieving the highest recognition rates is large
when there is a relatively small amount of training samples, and is small when there is a relatively large
amount of training samples. This tendency is reasonable from the viewpoint of estimation error correction
by transfer vector smoothing.
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Table 2: Japanese phrase recognition results for multiple speakers.
recognition rates for top 1 choice (%)

ﬁg%g;gg input speakers standard
o with adaptation without adaptation speaker
A MHT MXM FSU MHT MXM FSU MAU

10 words | 30.0 84.06 87.36 57.19
25 words || 20.0 88.41 87.36 65.11
50 words || 10.0 90.94 88.09 84.53
100 words |} 10.0 92.39 87.36 89.21

47.10 73.29 3.96 93.19

These results confirm that the VFS principle is an effective method for speaker adaptation with a small
amount of training samptes.
CONCLUSIONS

In this paper, we described a speaker adaptation method called Vector Field Smoothing (VFS) for a Hid-
den Markov Network (HMnet) generated by the Successive State Splitting (SSS) algorithm, and showed.
experimental results of speech recognition for multiple input speakers.

Through continuous speech recognition experiments using the “ATREUS/SSS-LR” continuous speech
recognition system, we showed the high performance of our speaker adaptation method.
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