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ABSTRACT - The use of Time Delay Neural Networks (TDNNs) for removing additive
noise from continuous speech is described. Mel scaled frequency coefficients are used
to parametise the noisy speech which is input to the network. The network is trained to
extract the speech signal from the noise using the gradient back propagation
algorithm. Preliminary results are presented.

INTRODUCTION

Neural networks have been used successfully in the past for noise reduction in speech signals. Of note
are the papers of Tamura, (Tamura, 1988) (Tamura, 1990) and Sorenson (Sorenson, 1991) where mutii-
layer neural nets were used with varying forms of preprocessing of the noisy speech signal. The
encouraging results of Waibel's study into using TDNNs for phoneme recognition coupled with the
strong spatio-temporal mapping features of this type of network lead to the choice of TDNNs as a good
candidate for removing noise from speech.

This paper presents the preliminary results of an investigation into the use of a TDNN for removing
noise from speech. The paper is divided into three sections. The first describes the TDNN and its
network equations. The second section outlines the testing procedure and presents the results. The
final section presents a summary and discusses directions for further research.

THE TDNN ARCHITECTURE

Waibel and co-researchers first introduced the Time Delay Neural Network in their 1989 paper (Waibel
1989b). Their TDNN was described as a translation invariant back-propagation network that performed
better than sophisticated continuous acoustic parameter Hidden Markov Models on noisy speech
recognition tasks. The temporal structure of the TDNN was found to well model the time invariant
characteristics of speech. A succession of papers then followed, (Waibel, 1989a) (Lang, 1990)
(Hampshire, 1980), highlighting various useful properties of the TDONN in which they obtained very
good speech recognition results.

There is a significant difference in the way that Waibel used the TDNN for speech recognition tasks and
the way that we have implemented it for additive noise removal from speech. For speech recognition
the TDNN is set up as a classifier. That is, the output of the network is in the form of a classification of
phoneme type when excited by input speech. in our network the output is in the same form as the input
speech parameters, and as such, it is operating as a form of adaptive filter during training.

A spatio-temporal diagram of a small TDNN is shown in Figure 1. There are five input speech frames
consisting of 16 Mel scaled frequency coefficients with a hidden layer of three frames of 16 elements
and an output layer of one frame of 16 elements. Each frame in the hidden layer is fully connected to
three consecutive frames in the input layer with a time shift of one frame in the input layer for each
frame in the hidden layer. The output layer is fully connected to all three hidden layer frames. Thus the
first digits in the term "5d2-3d2-1" refer to the number of frames per layer. The "d2" terms refer to the
number of delays per layer (i.e. the current frame plus two delayed frames).

One problem in working with TDNNs is the visualisation of the active network parameters during
training. Being able to observe the connection strengths between each processing element in the
network is crucial in determining the learning abilities of the network. With 3072 weights in this relatively
small network we are presented with the rather difficult problem of displaying these weight values. The
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TDNN in Figure 1 displays the element output values as a square of varying colour and size. Element
outputs range from -1.0 to +1.0. Positive values are displayed in black while negative values are in
grey. This display does not give an indication of the weight values, however, we are experimenting with
a feature display that plots the weight values in much the same way as a spectrogram. The important
consideration here is to hightight the information content of the weight vaiue magnitudes as well as the
temporal structure as it pertains to the input speech data.
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Figure 1. Spectro-Temporal Diagram of a 5d2-3d2-1 TDNN.
The TDNN architecture is trained using the gradient back propagation method which may be

summarised as follows. The weights are first initialised to small random values. Experimentation with
the efficacy of the network during training has yielded values between + /- 0.0625. The input pattern

%1 is then applied to the input layer of the network so that
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Where f; refers to the frame number and i refers to the processing element within that frame. There
are P input patterns of class 4. The net values are propagated forward according to the formula
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Where the function gf) is the sigmoidal function.The i's and the j's refer to successive layers of the
network. The deltas for the output layer are then calculated using
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That is, each deita value for the output layer (layer M) is calculated by comparing the actual and

desired network outputs and multiplying the difference by the differential of the processing element
output. The errors are then propagated backwards through the network using



ml _ ', mi m m . -

6fii =g (hfii )wajjﬁi(sfjj, form=M,M—-1,...,2
fji
i

The weights are updated according to the rule
1
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where neta is the learning rate and aipha is the momentum term. In this equation, the index ¢ is used
loosely to refer to successive training epochs. i is important to note that this training procedure is
applied to the network separately for each time shift. An entire copy of the network is stored for each
time shift, and the resultant weight values are taken as the average of all time shifted images.

RESULTS
The TDNN was used to filter additive white noise from the five passages of speech shown below:

“Hayed, Heed, Hod, Hoed"

"We were away a year ago”

" know when my lawyer is due”

"Every salt breeze comes from the sea"
"I was stunned by the beauty of the view"

The input speech was sampled at a frequency of 12 kHz with 16 bit resolution. Anti-alias filtering was
performed inherently by the over-sampling analog-to-digital converters on board an Ariel DSP-32C
installed in a 486 PC host. The data were then organised into frames of 256 samples with a 50%
overlap and each multiplied by a Hanning window function. Pseudo-random white noise was added to
the speech at varying signal to noise ratios and then 16 Mel scaled frequency coefficients were
extracted from each frame of the data. The noisy speech coefficients were then used as the input to the
TDNN with the clean speech coefficients used as the desired training set.

The five sentences were sampled and concatenated to form a training database of 1400 frames of
coefficients. Two different modes of training were employed. The first was to present the entire
database to the network at the one time. Results for signal to noise ratios of 10dB, 0dB, and -3dB are
shown below in Figure 2. The second was to present a small portion of the database to the network
and train it until convergence was reached, as done in (Waibel, 1989b). The training set was then
doubled and training commenced again until convergence was reached. This pattern was continued
until the whole database had been presented to the network. The results for a signal to noise ratio of
10dB are shown below in Figure 3. As can be seen, the incremental training method allows a much
smaller mean squared error between the actual and desired outputs as well as faster training than the
full training method.
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Figure 2. TDNN training using full data set - S/N ratios of 10, 0, and -3 dB.
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Figure 3. TDNN training using incremental data set - $/N ratio of 10 dB.

It was found that the sequential training method allowed the network to fearn localised features of the
database with greater accuracy. This method aliows the network to incrementally improve its
generalisation of the necessary features required to extract the speech from the noise. Simulations
using the entire database as the training set from the start showed that the network learned very stowly
and achieved nowhere near the levels of error minimisation than that cbtained by incremental training.

- CONCLUSIONS

A TONN based noise removal architecture has been described. Preliminary results of the network's
ability to filter white noise from speech are promising. Future investigations will address the ability of
the network to generalise for speech not included in the training database. Further results will be
presented at the conference.
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ABSTRACT - this paper describes an initial study into the use of an artificial neural
network for discriminating between spoken Australian English, Mandarin Chinese and
Lebanese Arabic. Seventeen features derived from the speech waveform and its
spectrum were applied to the input of the network. The choice of these features was
made from considerations of the known phonological and morphological differences
between the languages. lLanguage classification was better than 94% correct using 30-
second samples of speech. The sensitivity of classification {o each of the features, and to
shorter speech samples are examined.

INTRODUCTION

Automatic recognition of the ianguage being spoken by an individual may be of considerable practical

. value in future speech response and recognition systems, as well as having intrinsic scientific interest.
The problem has been investigated with some success, using Hidden Markov models coupied with
pitch contour analysis, to disciminate between English, Spanish, Hindi and Mandarin Chinese (Savic
et al. 1991). In this paper we describe an initial study into using an artificial neural network (ANN) to
discriminate between spoken Australian accented Engiish, Mandarin Chinese and Lebanese Arabic.
These three languages and dialects were chosen as major representatives of three language families,
and are also well represented in the University community, so simplifying speech data collection.

The approach taken attempts to exploit the known major phonological and morphologica!l differences
between the languages. In essence, we expect that specific features in Arabic (such as the large
proportion of pharyngeal and laryngeal sounds), and Mandarin (as a tonal language, with a highly
constrained short syllable structure) would positively identify them. English would be identified by an
absence of such specific features. For an automatic spoken language recognizer these discriminating
features have, naturally, to be realised from the acoustic speech signal.

A practical recognition system should be designed to operate on an appropriately small feature set
and on a minimum duration speech sample. The paper describes the choice of seventeen potentially
discriminating features from the speech signal. These features are derived from 30-second samples
of speech, and are used to train the multilayer perceptron (MLP) artificial neural network. The paper
describes an examination of the sensitivity of language recognition to the members of the feature set,
and the reduction in accuracy of recognition as the test sample duration of is reduced to 5 seconds.

DISCRIMINABLE FEATURES OF THE CHOSEN LANGUAGES

The three languages chosen for this study are from three language families; by definition this should
make them more discriminable than languages from one family. The chosen languages do indeed
exhibit morphological and phonological differences, as discussed below.

Lebanese Arabic

Arabic, the most widely spoken Semitic language from the Afro-Asian family, has a classical written
form as well as many colloquial dialects. Our study was confined to speakers of the Lebanese dialect,
reading from standard text.

The major features of interest here us arise from Arabic’s simple vowel system, the large number of

fricative consonants, and the pharyngeal and laryngeal consonants. The latter make the sound of
Arabic more gutteral than other languages.
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