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ABSTRACT - The application of Hidden Markov Models (HMM's) to speech research has yielded
some of the best performing speech and speaker recognition systems. In this paper an extension
to standard Markov models, second order HMM's, which allow dependence of transition prob-
abilities on previous states as well as on the current state, incorporating in-context information
on the hidden states, is presented. Both standard Baum-Welch re-estimation and discriminative
alpha-network training techniques are presented.

INTRODUCTION AND TERMINOLOGY

When applying HMM’s to speech recognition it is a standard practice to make a first order Markov assumption
that at each observation time, t, a new state is entered based on the transition probability, which depends
only upon the previous state. Another assumption is that the output at each time step depends only upon
the state at that time, regardless of when and how the state was entered. In this paper the impact of altering
the first assumption, so that the state which is entered at any time step, t, is dependent on the previous two
states, at { — 1 and ¢ — 2, is examined. This is referred to as the second order assumption.

Each state in a standard HMM has an associated initial probability x;, such that:
7 = Pr(s; =1)
where s; is the state of the model at time t.
First order transition probabilities, a,;, determine the probability of a transition between states i and j:
aij = Pr{s; = jls;_1 = 1)

For the second order Markov models which are developed here, these first order transition probabilities apply
only to the first transition in the state sequence,

Second order transition probabilities a;;x, determine the probability of a transition to state k, given that we
have had a transition from state i to state j:

aiji = Pr(s; = klsio1 = j, 500 = 1)
Each state has an associated output probability function b;{(0,), which is the probability of observing o,

when in state ] at time t:
bi(0) = Pr(oils; = j)

There are T observations in the complete observation sequence, which is denoted by O = OT. The
corresponding state sequence followed by the model is S = sy, s92,...,57.

We shall refer to the complete set of parameters which characterises the HMM as A = {m;, a;5, aiji, b5 }.
Using the terminology presented so far we can calculate the probability of a state sequence, given the model,
and the joint probability of the state and observation sequences, given the model, as follows.
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In the following sections, algorithms for training these models are developed.

SECOND ORDER BAUM-WELCH RE-ESTIMATION

The Baum-Welch re-estimation process involves taking an initial estimate for the HMM parameters, and ap-
plying update equations to the model parameters in order to increase the likefihood of the training observation

given the model (Huang, Ariki & Jack, 1990). We define a function, Q, such that:

QUM = 5 > Pr(0, $|M)logPr{0. S|X)

all §

Pr (O|/\
Q(A,X) forms an auxiliary function such that
QLX) 2 QA ) = Pr(OX) > Pr(O]A)

(and the inequality is strict unless Pr(O[}) = Pr(OjA) ).
Now
T-2

IogPr(O,S|,\) log®,, + log@s,s, + Z Ioga,‘,,+,,,+2 + Zlogb,‘ (01)

=1 t=1

QAX) = ZPr(g;sé;)ilA)log}f—i‘i“

Pr(sy =i,83=40|A), _
ZZ*-*—OM)—“IDyaﬁJr

Z,:{ Pr(s; =1,8141 = J, 8042 = k,O[}) _
ZZ 2 Pr(OT) footije +

Zte L Priss =1,01)) -
Ot = . k
Z Pr(ON) fogh; (k)

(Assuming a discrete output distribution with output classes vy,.)

Therefore from (1) to maximise Q(), X} we must choose our re-estimates so that:

- Pr(0,s1 = i|X)
! o Pr(O,s1 = i]A)
- Pr(sy =1i,s0 = j,0[)
i Zj Pr(sy =14,s3= j, O\
- T Prisi =i, 5001 = j, 5140 = k,O]\)

T Prise =4, 8001 = 4. 542 = £, O|A)
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To simplify the calculation of these re-estimates we define forward and backward probabilities, o, and 3.

ai) = Pr(s; =14,0{)) (9)
ai(i,j) = Pr(si—i =i,s = j,04)) (10)
B:(i) = Pr(Ollsi=1i2) (11)

These « are calculated recursively as follows:

oy(i) = mibi(or) (12)
a(i, j) = al(i)aijbj(o’l’) (13)
a(j) = Zal(i)a,-jb,-(o2) (14)
@i k) = 3 (i Hagebelo), 3t < T (18)
o(k) = 3 (i k), 31T (16)

While the backward probabilities, 3, are approximated by using the first order transition probabilities:

. 1, for the final state of the model
orli) = { 0, otherwise an
Bi(5) = Y azibiloes1)Busa (i) (18)

i

The re-estimates for the model parameters, in terms of the forward and backward probabilities are then:

- o1 (#)61(3)

i 22 (DB (9) (19)
L ay(7)a;;b;(02)02(7)

WS (e (0050 (20)
G = Sy oes1(i,1)asjebe(00s2)Buys (k) 1)

T Y a1 (G ) aiEba (oe) Bra (k)

. et pm, (DB

bilk) = =EROemve VT 22
) T i) ) 2)
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SECOND ORDER ALPHA-NETWORK DISCRIMINATIVE TRAINING

Bridle's alpha-networks (Bridle, 1990) apply a gradient descent training procedure (which corresponds to
back-propagation in time, used in neural network training) to the discriminative training of HMM's. Suppose
we have a set, W, of word, or sub-word, models. Each model outputs a score, L,, for the likelihood of an
observation sequence given that model. Normalising these likelihoods across all models:

L

Py = =—— (23)
YT Yiew Ly
We discriminatively train these models by minimising
J = —logP,, where ¢ € W is the correct class (24)

Minimising J maximises the mutual information, between the observation sequence and the correct model
(Young, 1991).

For each parameter, ¢, of the HMM we calculate updates using the formula:

aJ

)
Ag) = o=

(25)

where n is the iteration step index, and 7 is the learning rate. As is common in neural network training a
momentum term, ¢, may also be included:

aJ
A6 = gy + A (26)

Therefore, to calculate updates for the first-order transition probabilities, a;;, with respect to a single word
class, w:

oJ 8J 8Ly,
Ba; ~ @Ly day (7
Also
aJ Py, — e
T 9
8Ly R
—~ = 29
802(]) ﬂl(]) ( )
0Ly,  dL, OBaa(j)
(9a,~j - 6(!2(]) 601']' (30)
= Fa(f)a1(i)b;(o2) (31)

To enforce the constraints on the a;;'s that 0 < a;; < 1,V4,5 and Zj a;; = 1,Vi a set of unconstrained
variables {A4;; } are introduced, and we apply the transformation

i 32
aij = W ( )
Then
6a‘1
6A:J- = aa(b — aij) (33)
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3Ly Ly Jag

0A; Bas A 34
= Zﬂq(] a1(1 O a,z( ]l_a,‘j) (35)

aJ w — Bcw . .
O(Ai]» = ——L;—) Z Ba(f)ai (8)bj{0n)air(851 ~ asj) (36)

In a similar way for the second order transition probabilities we find

aJ 8] oL

= Y 37
6(1,‘jk 6L.,, E)aiik ( )
AL L. 0L, Boulk)

= 38
Ba,-jk Zaat 6auk ( )
Bk .
D il (39)
OLy Kl L
3 = Zﬁt(k)atvl(lx])bk(ot) (40)
aijk 13

Transforming the a;;1's to enforce the constraints that 0 < aijr < 1,Y1, 5,k and 3, a5 = 1,Vk:

BA,jk
a;p = W (41)
Oaiji
TAL a;ji(br1 — aijr) (42)
ij
So
aLw (9Lw 3&,']1
= i 4
(‘)Aijk Z 6(11‘]'1 BA,'J’] ( 3)
= ZZﬂz Jore1 (4, 3)bx (01)aija (Sxt — aijn) {44)
[
8J EiJ ﬁLw
= T 4
6A,'jk ALy 6Ai]'k ( 5)

= Luzbeo) 22@ Jar-1(d, )bi(0r)as;i (8t — asje) (46)
i

Similarly, to determine updates for the parameters of the output distributions (the means and variances of
continuous distributions, for example), the partial derivatives of the parameters with respect to J must be
calculated, and then the update equation can be applied.

PRACTICAL IMPLEMENTATION

The Baum-Welch training algorithm presented gives a local maximum of the likelihood function. It is
important to start with good initial estimates, in order to approach the global maximum. The following
procedure is proposed to achieve estimates for the second order HMM's:
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1. Use a2 k-means procedure to achieve initial estimates for a first order Markov model for the training
data.

2. Train the first order Markov model using standard Baum-Welch re-estimation.
3. Use the first order model as an initial estimate for the parameters of the second order model.
4. Train the second order HMM using the Baum-Weich training procedure presented in this paper.

5. Discriminatively train the models using the second order alpha-network training procedure.

This procedure has been applied to a plosive (/b/,/d/, /g/. /p/) recognition task, by creating a five state
forward-transition only model for each phoneme. A minor increase in performance was observed. It is
proposed that the technique may be most useful when applied to ergodic HMM's where there is a much
greater range of possible state sequences. Plosives, and other phonemes are also frequently too short to
benefit substantially from the increased history in the models.

CONCLUSIONS

The second-order HMM'’s developed in this paper utilise transition probabilities depending on the previous
two states, rather than a single state, which is the norm for HMM's. In this way the models should be
capable of employing the additional information about previous state occupations to improve recognition
accuracy. The approach presented should be easily extended to higher order models.

A number of modifications to HMM's in order to give them greater modelling power have previously been
proposed. In (Brown, 1987) it is suggested that it would be desirable to aiter the output-independence
assumption to reflect the fact that the way an observation at time ¢ — 1 differs from the mean of the output
distribution influences the way an observation at time { differs from the output distribution for the model
at time ¢. Incorporating such a modification in the HMM leads to squaring the number of parameters
of the output distributions (Brown, 1987). The approach suggested here, however, increases the number
of transition probabilities for an n-state model by n® for a fully ergodic model, and by considerably fewer
for standard forward-transition only models, where many transition probabilities are set to zero. Since the
number of states typically used in HMM’s is usually significantly smaller than the number of parameters in
the output distributions, the second-order HMM's should be computationally feasible in most instances.
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