A GAMMA NETWORK APPROACH TO
AUTOMATIC SPEECH RECOGNITION

Jianxiong WU'  Chorkin CHAN!  Pengfei SHI'

tnstitute of Image Processing and Pattern Recognition,
Shanghai Jiaotong University, P.R.China.
*Department of Computer Science,
University of Hong Kong, Hong Kong.

ABSTRACT - Gamma neurons [1] are employed in this paper to construct a feed-forward
multi-layer network to perform automatic speech recognition. Gamma network can ap-
proximate complex time-dependent connection weights with simple network structure. Its
structure parameters can be learned in the training phase to determine an optimal structure
for dynamics processing to fit the particular application task. An error back-propagation
like leatning algorithm is derived and experimental results of speaker-independent phoneme
recognition are discussed.

1. INTRODUCTION

One of the main problems in applying neural network models to automatic speech recognition
is how to process time-varying information in speech signals in an effective way. A possible
solution to this problem is to introduce time-delay mechanism for neuron inputs. In this way,
the neuron output depends not only on the current input but also on the time-varying feature of
the input signal in the past. In general, the system equation for this kind of time-delay neurons
can be formulated by the following convolution model:

y(t) = F (u‘;{,f(t) + /; &'(t — 5)E(s)ds + n) (1)

Here y(t) is the neuron output, #(t) is a vector of inputs, o is a vector of connection weights
for the current input, w(t) is a vector of time-dependent connection weights for input signals in
the past, 7 is the threshold value, F(-) is a monotonically increasing non-negative function and
the superscript ' denotes vector transposition.

Due to the complexity of the general convolution model, wW(¢) must be simplified in order to
construct a network in practice. A common technique is to decompose w(t) into a weighted sum
of some basis functions, that is

T
(1) = 3 @9, (1) ®

Several research have been carried out along this direction. Waibel et al has proposed time-
delayed neural network (TDNN) [2] by employing impulse functions as the basis functions:

gr(t) = 6(t - d;) ®

In concentration-in-time neural network (CITN network) of Tank ef al 3], the integrands of the
T functions are proposed to serve as the basis functions, i.e.,

0rlt) = (dﬁ) een (+(1- 1)) @)

Gauss functions are chosen as the bases in the TEMP2 neural network proposed by Bodenhausen

t ol [4]
et a [ t) _ 1 (l-— dr)2 5
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Recently De Vries et al [1] suggests Gamma neuron to process temporal patterns which uses
Gammea functions as the bases in decomposing w(t),

gr(t) = 7 eap(—pt) (6)

o
(r=1

TDNN is quite successful in recognizing English phonemes [2]. However, it is obvious from
Eq. (2) and (3) that one cannot achieve good approximation by employing impulse functions as
basis functions. The TDNN structure specifies a fixed delay range to process the dynamic feature
of the input signal. However, there is no theoretical ground to determine the maximum delay 7'
The strength of a CITN network is limited by its simple network structure. Only the input layer
of a CITN network employs time-delay neurons, and there is no hidden layer in the network.
Besides, no comprehensive learning procedure is proposed for a CI'TN network. The principal
advantage of the TEMP2 network is that the structure parameters of the network ( ie., delay
time d; and delay window width o, in the Gauss function ) are adaptive and can be learned from
the training data. However, the relatively heavy computation requirement in a TEMP?2 network
usually results in the fact that only a few basis functions are employed in Eq.(2) which certainly
degrades the approximation capability of the network. Beside, there is no easy implementation
of the TEMP2 network using delay operators.

On the other hand, a Gamma neuron can take advantage of the nice properties of Gamma
functions to realize the required computation in a very effective way. Moreover it is shown that
any time-dependent function w(t) can be well approximated for a sufficiently large T using Eq.
(2) and (6) if W(t) exponentially decays to zero as ¢ approximates to infinity [5]. In addition,
static neuron model, TDNN and CITN can all be seen as special cases of a Gamma neuron
[1}. So Gamma neurons are very attractive as elements of a neural network which is capable of
processing time-varying information of complex input patterns such as speech signals.

A multi-layer network structure with Gamma neurons in both its input layer and hidden layers
(called Gamma network hereafter) are proposed and tested in an automatic speech recognition
experiment in this paper. Section 2 summaries the implementation of a Gamma neuron originally
proposed by De Vries ef al [1]. Section 3 discusses the training method for a multi-layer Gamma.
network. An error back-propagation algorithm is proposed to learn the connection weights of
a Gamma network @y, w;,...,Wr as well as the network structure parameter u’s. With such
an algorithm, a Gamma network can automatically determine its delay structure and adjust
the dynamics processing capability for each Gamma neuron in the network from a given set of
training data to achieve an optimal performance. Finally, experimental results of recognizing
speaker-independent phonemes (/b/,/d/,/g/} by means of a Gamma network are presented in
Section 4.

2. THE STRUCTURE OF MULTI-LAYER GAMMA NETWORK
Defining Gamma state variables £, (t) as
To(t) = () M
t
() = / gr(t—8)&(s)ds r2>1 (8)
[}

and substituting Eq. (2), (7), (8) into (1), one gets the simplified system equation for a Gamma,
neuron:

T
W=7 (Z T (1) + n> )

T=0

Using the derivative property of Gamma functions in Eq. (6), it is easy to show that the
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derivatives of the Gamma state variables Z,(t) should follow:

0%, (1)
ot
Under the assumption that the sampling frequency, f, (corresponding to the frame rate of a

speech recognition system), of the acoustic features, #(t), of the input signal is higher than the
Nyquist frequency, the discrete system equation of a Gamma neuron is

= —pZ (1) + pZri(t) r>1 (10)

Zo(n) = &(n) (1)

Zr(n) = (1-pw&n-1)+pd1(n-1) +>1 (12)
T

y(n) = f( u7rfr(n)+n> (13)

The above operation can be effectively realized by a Gamma node as illustrated in Fig. 1 (b
denotes a delay operator in the figure).

Figure.l The Structure of a Gamma neuron

The recursive memory structure in Eq. (12) is stable for 0 < g < 2 and the interesting
memory structure is obtained for only 0 < g < 1[1]. For # = 0, a Gamma neuron is reduced to a
normal static neuron. A Gamma neuron works as a discrete time CITN if 0 < u < 1. It becomes
a TDNN when p is set to 1. The strength of the Gamma neuron is the structure parameter “
can be learned in the training phase, so, the optimal temporal structure is determined to fit the
problem to be solved.

Multi-layer Gamma network is purely a feed-forward network. Every processing units in its
every layer is a Gamma neuron. The output of each Gamma neuron is the input of all the Gamma
neurons in its next succeeding layer. Assuming K layers in a Gamma network (including the
input layer) with M* Gamma neurons in the k4 layer, one can represent the system equation of
the Gamma network as

ML
yf(n) = F Z Zw}’hxf‘»,(n)+nf k=12,...,K (14)
i=1 r=0
1;?;1(") = (l—ﬂj"ci)zfn("*1)+H;ixfi,r—1("— 1) (15)
zfo(n) = i) i=1,2,... M! (16)

Here yf(n) and zf (n) are the output value and the value of the ** component of the rth

Gamma state variable, respectively, of the 7' Gamma neuron in the k** layer at time n. w}“-,
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is the connection weight between the output and the i** component of the 7' Gamma state
variable of the j'* Gamma neuron ir the k' iay=r. pf,- is the structure parameter for the i*?
input component of j® Gamma neuron in the k** laver, 'q}‘ is the threshold value of j** Gamma
neuron in ine k** layer. yJQ(n) = zj(n) is the input value in the j*} input node of the network at
time n.

In Eq. (14), all Gamma neurons in the network have the same number of Gamma state
variables, i.e., the parameter T is common to all the Gamma neurons. Since every Gamma
neuron has its individual structure parameter ;1}‘,- for every input component of it, the capability
of processing time-varying information for each input component in every Gamma neuron is
different. In this manner, the network is highly powerful to process complex dynamic information.
Moreover, since the structure parameters pf‘-’s are learned from the training data, the network
structure is adaptive to the particular application task.

3. TRAINING A MULTI-LAYER GAMMA NETWORK

It is quite straightforward to generalize the error back-propagation algorithm [6] of Rumel-
hart et ol to train a Gamma network. Let #(0), £(1),...,#(N) be a training sequence and
d{0), (1), ... ,d{N) be the corresponding desired network output (#{n) and d{n) are M°-dimensional
and M*dimensional vectors, respectively). The network parameter set © = {wf,-,,u}‘,vn])—‘} can
be obtained through the following stochastic optimization process:

N M¥

3 (6 (n) ~ d5(n))° (a7

n=0j=1

2| —

©" =min £ = min
€] o

af(n) and Ef(n) are defined as the net input and error variable for the j** Gamma neuron in
the k** layer at time n, i.e.,
ME1lT
af(n) = 30 Y wheaki(n) + 0} (18)
i=1 120

8E(n) _ 9E(n) dy}(n) JE(n)

k = . =F (cF .
5(m) = adf(n)_ay]’v’(n) 60;(71) (](")) (7y;(n) (19)
where
MK
Bn) = Y5 ) - ()’ (20)
j=1

is the network output error at time n. The following recursive formula for ccmputing 5}‘(11) can
be derived if a sigmoid function is employed for F(-):

67 (n) = yfm) (1= () (o (1)~ ds(m)) e
MEH T
$En) = Fofm) S 6F(n) D k) 0<k< K (22)
i=1 r=0
ka1 - 0T () .
where It (n) = 2= can be recursively computed from Eq.(7) and /8) by
n Ayt (n)
Fo(n) = 1 (23)
Ifi'r(n) = If.‘,r-l(")'-]fi,r—l(") (24)
Tho(n) = eap(-ufinf.) (25)
k
Tfir(n) = l—:f*' nfs Jjir-1(n) (26)
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consonant || No. of training tokens | No. of testing tokens
/b/ 1207 534
/d/ 1219 390
/e/ 720 285
total 3146 1209

Table.1 Number of training and testing tokens

Using the following derivatives, the network parameters can be determined by the well-known
steepest descent searching method or any other optimization procedure:

OE u

— = 5k

= L0 )
OE Y .

Bk, géf(n)rjh(n) (28)
OE 1 & El

G = w25 T (he(n) - 2l (n) (29)
Hii Hji nzo =1

4. PHONEME RECOGNITION EXPERIMENTS

English phoneme recognition experiments with a subset of the DARPA TIMIT speech database
[7] are performed to evaluate the performance of a Gamma network trained by the proposed learn-
ing algorithm. Three consonants (/b/,/d/,/g/) in different phonetic contexts are extracted for
recognition from continuously spoken sentences accoiding to the phoneme boundaries provided
by the database. Since these three consonants are very short in duration and their characteristics
are also reflected in the surrounding phonemes, a 16ms segment of signals is included both before
the onset and after the offset of these consonants.

The speech material was spoken by 630 speakers, each spoke five randomly selected sentences
from the MIT acoustic-phonetic corpus (there are in total 450 sentences in the corpus). 3146
tokens of three consonants from 420 speakers are employed as the training set and 1209 tokens
from the rest of speakers are served as the testing set. Table.l shows the number of training and
testing tokens for each consonant.

The speech signal is sampled at 16KHz. After Hamming windowing, a 256-point discrete
Fourier transformation is applied every 4ms. The acoustic features employed in the experiment
are 16 mel-scaled cepstrum coefficients [8] computed from the logarithm output of a bank of 20
critical bandpass filters [9]. )

A Gamma network with one hidden layer is employed in the experiment. The network consists
of 16 Gamma units in the input layer, 20 Gamma units in the hidden layer and 3 units in the
output layer. Each unit in the input layer receives a mel-scaled cepstrum coefficient each 4ms.
Every output unit corresponds to one consonant class. Gamma units in the input layer have 4
Gamma state variables and those in the hidden layer have 6 Gamma state variables. All network
parameters are initialized with random values. After the training process terminated, a correct
recognition rate of 82.4% is obtained for the testing consonants.

For the purpose of comparison, a TDNN with the similar architecture, i.e., 16, 20 and 3 units
in the input, hidden and output layers, 4 and 6 delay operators for units in the input and hidden
layers respectively, is constructed and trained by the standard error back-propagation algorithm.
When tested with consonants in the testing set, a correct recognition rate of 78.6% is obtained.
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Gamma network TDNN

R NOAVCARCAVORNEIAvS
/b/ || 466 | 37 31| 441 24| 69
/d/ 44 | 303 43 45 | 266 | 79
/g/ 26 | 32| 227 28] 14| 243

Table.2 Confusion matrices for a Gamma network and a TDNN

Table.2 shows the confusion matrices for both the Gamma network and the TDNN.

5. CONCLUSIONS

This paper presents a Gamma neural network architecture for recognition of patterns with
temporal structures. A learning algorithm based on the principle of error back-propagation
is derived. Speaker-independent English phoneme recognition experiments are performed to
verify the proposed network architecture and the associated learning algorithm. An improved
recognition performance is observed when a Gamma network is compared with a TDNN.
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