Fractal dimensional analysis of voice fluctuation:
normal and pathological cases.
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ABSTRACT - This paper reports on the values of fractal dimension of fundamental
frequency (Fp) fluctuation and amplitude fluctuation for two kinds of voice, the normal
and the pathological {perceived as “rough”). The values of fractal dimension were
computed by the embedding method. The mediar of fractal dimension was 3.3 for the
normal voice and 4.8 for the pathological, differing by 1 to 2 dimensions. Reconstructed
phase portraits were also examined to characterize the difference between the two
kinds of voices geometrically.

INTRODUCTION

The aim of the present study is to ditferentiate two kinds of voice, the normal and the pathological
(perceived as “rough”), by using the fracta dimensions of fundamental frequency (Fg) fluctuation and

amplitude fluctuation. The long term goal of ihe study is io establish a clinical method for detecting
pathological changes in voice quality based on a fractat dimentional analysis.

Okarmoto and Kakita (1988) previously reported on a fractal dimensional analysis of voice fluctuation
in two subjects, one normal and one pathological. The median values of the dimension were 2.6
for the normal subject and 4.3 for the pathciogical, ditfering by 4.7 dimension. This paper presents
the results of examining 6 normal cases and 6 pathological cases, thus providing more precise
values of the fractal dimensions. The paper also discusses ihe characteristics of the generation
model of the fluctuation based on quasi-phase-portraits.

METHODS

The time series of Fy and amplitude were extracted from the speech waveform of sustained
utterances of a Japanese vowel /e/. The speakers were instructed to produce /e/ for 2-3 seconds
with comfortable piich and loudness. The original waveform was sampled at 40kHz and was
digitized with a 16 bit analog-to-digital converter. Fundamental periods and maximum amplitudes
were obtained by peak detection method.

For both the normal and the pathological cases, 12 voice samples (2 repetitions x 6 subjects) were
analyzed.

The value of the fractal dimension, or, strictly speaking, the phase dimension, was obtained as
follows:

(1) Reconstruct phase portraits for d-fold (=1, 2, 3, ...) dimension by embedding;
(i). Suppose that x() (=1, 2, ..., M} is a time series.
(if) Next, make a new series

Xi=(X(), X(+2), X(j221), -, X(j+(a-1)5)} - (1)
(=1.2, ..., N) (NSM~(d-1)),

where t is an arbitrary constant of time interval.

(ii) Then plot Xjin a d-dimensional space.
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{iv} X; constructs a trajectory of the phase portrait, a sampled candidate of the original phase-
/ rtrait
portrait.

The phase space thus constructed is called a pseudo-phase-space, or embedding space.

(2) Calculate a correlation function for each pseudo-phase-portrait projected in d-dimensional space.
(i) Fixthe value of d at a specific value.
(i) The number of points to be plotted is N (N<M-(d-1)).
(iiiy Compute the distance /= [X;-Xf between a pair of points.

(iv) Count the number of pairs, n, where / <r.

(v) Calculate therate C(r)= (—Igij

The correlation function is defined as
o= PV
(r)= N (number of pairs (i) with distance s;; < ) ... (2)
C(r}) represents the probability that the point X; lies within a sphere of radius r. (Moon, 1987) If C(r)

is approximated as C(r) o= rP... (3), then D is called the correlation dimension. This definition of
dimension was proposed by Grassberger and Procaccia (1983).

Correlation function C(r)

Distance r
Figure 1. Correlation function C(r)

Figure 1 shows a log-log plot of an example of C(r). Notice that, C(r) shows a marked increase for a
small r region, whereas C(r) tends to saturate for a great r region.

According to Eq. 3, the linear portion of C(r) is of interest. The value of the slope is specific for d
value (d=10 in this data).

{3) Measure the maximum slope of the function:
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Embedding Dimension d
Figure 2. Correlation dimension D versus dimension of embedding
pseudo-phase-space d for an amplitude fluctuation of normal voice.

Figure 2 shows a plot of D vs. d. Notice that D increases for small d region. While, D gets close to
an asymptotic value for great d region. The asymptotic value of Dis called the fractal dimension.

RESULTS

Figure 3 shows -box & whisker plots for 12 normal and 12 pathological voice samples. Each data set
consists of two repetitions each of 6 male subjects.
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Figure 3. Box-and-whisker plots for the values of correlation dimensions

For both the Fg series and the maximum amplitude series, the medians are about 3.3 for normal and
about 4.8 for the “rough” voice. The median of the fractal dimension for the “rough” voice was greater
than that for the normal voice. by approximately one.

H-spreads, or the interquartile ranges, are about 1 for all the cases except the Fq series for normal
voice, whose value was about 0.5.

DISCUSSION

According to the theory of fractal/chaos science, the value of fractal dimension can be considered as
the number of independent parameters specifying the dynamical system of the phenomenon.

In order to find out what dynamical system yielded such a fluctuating time series, the phase portraits
of attractors were examined for 12 normal cases.
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Figure 4 Reconstructed pseudo-phase-portraits for normal voice (a,b), and
"rough" voice (c,d)

Figure 4 shows pseudo-phase-portraits reconstructed from the time series by embedding method.
Plots (a, b) are for the normal voice and plots {c, d) are for the "rough" voice. For both cases, a
sample whose fractal dimension was closest to the median was selected.

Plots (a) and (c) show the views of the portrait (¢ = 10, see Eq. 1) projected on the first and the
second axes. Plots (b) and (d) show different views of the same portrait projected on the first and the
third axes. Scale of the axes is the same for both cases. Each of the scattered points indicates a
sampled point of the trajectory comprising the phase-portrait.

The data points in Plots (a) and (b) are compactly and evenly distributed. In contrast to this, the data
points in plots (c) and (d) are widely spread as a whole and, moreover, form two locally dense
clusters

For the normal voice, the true phase-portrait estimated from the "single-cluster” quasi-phase-pottrait -
-- plots () and (b) --- may be expressed as an ellipsoid. The true trajectory turns around the surface
of an ellipsoid in a rather random manner. For the "rough" voice, the true phase-portrait, estimated
from the "double-cluster" quasi-phase-porirait --- plots (c) and (d) ---, may be expressed as a torus".
The tosus-like shape of the phase-portrait supports the fact that the time series manifests a two-fold
{e.g. long-short) periodicity.
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PHASE SPACE BEHAVIOUR OF SPEECH
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ABSTRACT - Characterisation of phase space behaviour of speech gives an alternate view
of speech waveforms. Correlation dimension and false nearest neighbour measures are just
two techniques for investigating the dynamical behaviour of speech. The recent false nearest
neighbours technique for determining the embedding dimension for phase space reconstruction
of a time series is used on both voiced and unvoiced speech. Results from false nearest
neighbours are compared with the correlation dimension results.

THEORETICAL CONCEPTS

An n-dimensional manifold M is a space in which it is possible to set up a coordinate system near
each point such that locally the space looks like a subset of the Euclidean space R™. A dynamical system
D is a smooth manifold M, together with a vector field v defined on M (Casti, 1989). An attractor is a
subset of n-dimensional phase space which almost all sufficiently close trajectories approach asymptoti-
cally.

There are three major areas of interest in the characterisation of attractors: Lyapunov (or character-
istic) exponents, entropy and dimensions. Lyapunov exponents give the average rate of expansion (if
positive) or contraction (if negative) near a limit set. They generalise the linear stability criteria for fixed
points and limit cycles. A non-chaotic system is asymptotically stable if all its Lyapunov exponents are
negative. For any limit sets on continuous, time-dependent systems, except an equilibrium point, the
exponent is zero. Although it is required that the sum of exponents is negative for dissipative systems,
the presence of oné or more positive exponents indicates a strange attractor (Condie, 1991).

Dimensions

The dimension of an attractor can be expressed in many ways, but the underlying idea is that there
is a lower bound on the number of variables needed to describe the steady state behaviour of the system.
A non-chaotic system has integer dimension, whilst a chaotic system almost always has fractal (non-
integer) dimension.

Given an attractor in R™ covered by N(r) n-dimensional hyperspheres of radius r then
o The fractal, or Hausdorff, dimension is calculated as the limit is taken. As r — 0, N(r) o< r=D#.
e The capacity dimension is defined as

. InN(r)
Deap = lim 1577y
or alternately, N(r) o (1/r)Pee» for some k > 0.

e Let P; be the relative frequency of visitation of a typical trajectory to the ith hypersphere. The
information dimension is then defined to be

- i 2
P
where H(r) = — Z‘N:(;’) P;In P, or alternately H(r) = kr~P1 for some k > 0.

e The correlation dimension can be expressed as



where 1
€)= Jim 236 - s - )
i#y
©(z) is the Heaviside function and || - - - || represents the Euclidean norm. Alternately C(r) = krPeer
for some k > 0.

¢ Given Lyapunov exponents Ay, Ay, - - -, A; where ZLI A; > 0 then the Lyapunov dimension

A4 Ay

Dp =35+
1A 41

If no j exists to satisfy the condition, Dy is defined to be 0. The sum of positive exponents is
essentially the Kolmogorov entropy.

False Nearest Neighbours

From the set of observations z(n), multivariate vectors in d dimensional space y(n) = [e(n),z(n +
T),---,2(n+(d— 1)T)] are used to trace out the orbit of the system, where T is the time delay (usually
chosen to be the first minimum of the average mutual information). The aim of the method proposed by
(Kennel et al., 1992) is to find the embedding dimension d by examining the topology of the embedding.
The purpose of time delay is to unfold the projection of multivariate state space onto the one dimensional
time series back to a multivariate system representative of the original. Takens (1981) states that d > 2d 4
where d 4 is the dimension of the attractor, but this is only a sufficient condition, and in experiments it
is preferable to use dg, the minimum embedding dimension.

The idea of false nearest neighbours is that in examining ¢ and then d + 1 one can distinguish true
neighbours of a given point from false neighbours. False neighbours are points on the data set that are
neighbours solely because we are viewing the attractor in too small an embedding space (d < dg) and
in a higher dimension those points will have moved apart and no longer be neighbours. The value for
dg is then obtained when there are no false nearest neighbours in successive embeddings. Other meth-
ods involve computation of some invariant on the attractor until it becomes independent of d, but such
methods tend to be data intensive, and somewhat subjective in determining dg.

Neighbours are determined by simply using the square of the Euclidean distance between points on
the attractor. The rth nearest neighbour y("}(n) of y(n) has distance

d-1
Ri(n,7) = (e(n+ kT) — 2(n + kT))?
k=0 :
In d+1 dimensions R}, (n,7) = R(n,r) + (z(n + dT) — (") (n + dT))2. Thus a false nearest neighbour
can be defined as any neighbour such that

Ry (n,r) ~ Ra(n,) _ Jo(n+ dT) — =) (n + dT)|
Ri(n,r) - Ra(n,r)

> Riot, Ria 210

It is sufficient to use r = 1, for the nearest neighbour only, and interrogate on all points n = 1,-, N of
the attractor. Unfortunately this condition is not sufficient for determining dg: the nearest neighbour
is not necessarily a close neighbour - indeed Ry(n, 1) can be comparable to the size of the attractor for
a noise waveform, leading to erroneous results. Thus a second measure is used in conjunction with the
first, and both must be satisfied for true neighbours.

Rapr(n)
Ehia A S Aso
Ba > Agol
where
1 & 1 & s
2 [ Prp—
Ri= gy L (eln) = D)
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