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Abstract

The papers Speaker Normalization of static and dynamic vowel spectral features
(J.A.8.A 90, July 1991 pp 67-75) and Minimum Mean-Square Error Transformations
of Categorical Data to Target Positions (IEEE Trans Sig.Proc,40 Jan 1992, pp13-23)
by Zahorian and Jagharghi describe an algorithm for transforming the space of speech
sounds so as to improve the accuracy of classification. Classification was accomplished
by both back-propagation neural nets and by a Bayesian Maximum Likelihood method
on the model of each vowel class being specified by a gaussian distribution. The
transformation was an affine transformation obtained by choosing ideal ‘target’ points
for each cluster in a second space and minimising the mean square distance of the
points in the speech space from the appropriate target. The speech space itself was a
space of cepstral coefficients obtained from a Discrete Cosine Transform.

These findings are remarkable, indeed almost unbelievable. The reason is that
both the maximum likelihood classification on the gaussian model, and the Neural
Net classifier are essentially affine invariant. In the case where the transformation is
invertible, this is clearly the case. When the transformation has non-trivial kernel, it
may happen that the classification gets worse, but it cannot get better.

A back-propagation neural net in effect classifies by dividing the space into regions
by means of hyperplanes. The gaussian model does so by means of quadratic forms,
with quadratic discrimination hypersurfaces. Projecting a hyperplane by any non-zero
affine map which is onto the target space will usually give another hyperplane in the
target space, and if the second separates points, so will the first. Conversely, if there
is a solution in the target space, it can be pulled back to a solution in the domain
space. It is not hard to show that similar considerations apply to the case where we
use quadratic hypersurfaces.

In this paper, we attempt to account for the results of Zahorian and Jagharghi by
investigating vowel data. We describe a simple projection algorithm which may be
applied to high dimensional data to give a view on a computer screen of the data and
of transformations of it.
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1 Intreduction

It is well known that the conventional back-propagation algorithm for a three layered neu-
ral net performs elassification by deciding into which region of a space of measurements a
particular observation falls, and that the partition of the space into regions is cssentially by
means of hyperplanes, cach unit in the hidden layer delining one such hyperplane. So if we
use a neural net to classify vowel sounds, then distinguishing befween fa/ and /u/ (repre-
sented in what follows as AA and UN. the conventional Carnegie Mellon nomenclature) then
whether we choose to nse k Cepstral coefficients or m filterbank values to characterise each
utterance, we have a cluster of points representing the AA sound in RY¥ [ R™ respectively,
and a dillerent cluster of points representing the UX sounds. In Figure 1 and Figure 2 we
show the pesult of projecting from a twelve dimensional space of simulated filter bank values
the results of a number of utterances of cach of these sounds: the data was extracted from
the TIMIT data base and shows cach vowel sound in a different colour, reproduced here as
different grey scales, The figures show two different projections obtained by rotating the
containing spacc of dimension 12 between projections.

Figures 1. and 2.
Two different views of 12 dimensional points projected to a 2 dimensional space. The frames of
an utterance arc connected by lines, showing the trajectory of that vowel. The UX vowel data are
printed in grey, the AA vowel data in white.

As might be expected, the clusters form two roughly multivariale gaussian distributions,
with some small degrec of overlap. Similar clusters are obtained for each distinct vowel
although the degree of overlap and the locations of the centres in the space may vary widely.
If instead of using filterbank values we were to use cepstral coefficients, we have found in
carlier work (5], [6] that a non-lincar transformation is applied to the representation space.
It remains however true that the vowels still form approximately gaussian clusters, although
diphthongs or glides can form rather different shaped clusters.

If we wish to separate the clusters, we could do so by assuming that the clusters are
indeed approximately gaussian and computing the covariance matrix for each cluster, giv-
ing a quadratic discrimination hypersurface il we use a Bayesian classification scheme based
on likelihood ratio. Or we could apply a number of methods to simply place a hyperplane
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between the two clusters. A three layer neural net with one unit in the hidden layer accom-
plishes this,

Multiple classification of many vowel classes may be reduced to pairwise binary classi-
fication. and it is therefore unnecessary to consider the problem of distinguishing between
more than two vowel utterances.

Although the quadratic discriminant hypersurface would seem to be a better approach, in
the case when the covariance ma'rices for the two clusters are the same, the quadratic reduces
to a hyperplane, and in general, it is only in extremal cases that the quadratic hypersurface is
sensibly non-affine in the reguon between the two clusters. 1t is common therefore to rely on
affine methods; these are we'l known and robust, and easily implemented with the classical
neural nets. The solutions obtained by the perceptron convergence algorithm, to which the
back-propagation algorithim reduces in the case of a single unit in the hidden layer and a
binary output, are optimal when the sets are indeed linearly separable, that is to say, if there
is any solution, the algorithm will find one. If the two clusters overlap however, all that can
be said is that the meun position of the solution hyperplane is optimal.

The papers [1] and [2] make the claim that an affine transformation of the vowel space
can improve the effectiveness of classification of a neural net. Now this is a very surprising
result and on the face of things impossible. If two clusters are linearly separable, then there
is by definition a hyperplane which separates them. Any affine transformation which is 1-1
can only take this separating hyperplane to another such separating hyperplane. If an affine
transformation is not 1-1, then it has a non-trivial kernel, by elementary linear algebra. The
separating hyperplane has an orthogonal complement which determines a unique subspace
of dimensior, 1, and if this subspace is in the kernel of the linear part of the transformation,
the separating hyperplane is ‘killed’ by the transformation. Separation of the image of the
two clusters by the transformation by some new hyperplane in the image space may or may
not be possible. The MSECT algorithm described in [1] and [2] requires the user to assign
to each cluster some suitable ‘target centre’ in R™ for any choice of m. It then finds the
afline transformation, unique if the target space has lower dimension than the domain space,
which minimises the sum of squared distances of each point from its intended target. The
declared intention is to use it as a pre-processor for a neural net or other such classification
system.

2  Mathematical Issues: Paradox Found.
If there is a separating hyperplane U in the image space, and if
T:R*"— R™

is the affine map, then 77! must have dimension n — 1 since we may easily construct a
projection p from R™ to R which has U as kernel and has rank 1. If we now consider the
composite po T we see that it has rank 1, since T is onto, and kernel T7'U, and the result
follows from the rank nullity theorem. Moreover it is immediate that if the map p takes one
cluster of points to positive values and the other to negative values, i.e. U separates the
clusters, then so does po 7" i.e. T~'U separates the clusters too.
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If the clusters are not linearly separable, but some subset is, then the same argument
applies to the subset and moreover to the largest such subset. Hence any solution to a
separation by neural nets in some second space reached by an affine transformation onto the
second space from a starting space, gives immediately a solution in the starting space. So
how can any such transformation improve matters?

3 Experimental testing: Paradox confirmed.

In order to investigate the claim that it mysteriously does, we extracted from the TIMIT
data base a set of pure vowels, labelled AA (/a/), AE (/e/), AH (/A/), AO (/o/), EH
(/e/), IH (/1/), IY (/i¥/) and UX (/u/). These were transformed into trajectories in R'? by
taking a simulated filter bank obtained by binning the results of an FFT into 12 mel spaced
bins as described in [3], [4]. In order to confirm the appropriateness of the analysis, we
investigated the vowel data visually by projection methods: random rotations of the vowel
space were performed while a projection to the screen of the computer was imposed on the
result. This allows the user to see the clusters corresponding to the trajectories. We chose
different colours for each vowel sound.

We then trained a neural net with one unit in the hidden layer to separate out the two
clusters. This was repeated with different pairs of vowels. Results are shown in table 1. ,
with two repetitions of the training and classification process.

Original Data Original Data Transformed Data | Transformed Data
Vowels | Percentage correct | Percentage correct || Percentage correct | Percentage correct
on training data on test data on training data on test data

AA UX 99.50 % 99.13 % 100.00 % 99.68 %
100.00 % 98.97 % 100.00 % 99.68 %
AA AE 87.00 % 84.49 % 90.50 % 92.98 %
87.00 % 84.28 % 94.50 % 92.30 %
EH [H 82.50 % 74.93 % 81.50 % 79.86 %
86.50 % 73.04 % 83.00 % 83.04 %
AH FH 83.00 % 70.55 % 86.00 % 82.21 %
85.50 % 80.58 % 87.50 % 80.95 %
AAIH 99.00 % 98.00 % 99.00 % 98.87 %
99.50 % 96.61 % 99.50 % 98.70 %

Table 1. Separation of 2 vowel data clusters by a NN. The original data are in 12 dimensions,
the transformed data in 2 dimensions.

Next we applied the MSECT algorithm as described in [1] and [2] to the original 12
dimensional data. We did this several ways, one by choosing ‘natural’ points in a two and
three dimensional space for the clusters to get sent to. Some of these results are shown in
table 2. finally, we settled on doing the process for two vowels at a time into the real line,
sending one vowel to 1 and the other to -1. The same neural net was then applied to the one
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dimensional data in order to classify the points representing vowel trajectories, now spread
out along the real line. The results are shown in table 1.

It may be seen that the results of Zahorian and Jagharghi are confirmed. Applying
MSECT to the vowel data can increase the percentage of points correctly classified. It is
true that the dimension reduction carries a cost and that it is high when we reduce the §
clusters to two or three dimensions. On the other hand, when we simply take two clusters,
two vowels, and try to separate them with a hyperplane, it is more effective to project onto
a line and then separate with a single point, than it is to separate directly in the domain
space. The neural net ought to be finding the hyperplane which gets sent to that single point
by the MSECT algorithm. But it generally doesn’t.

Data Set Percentage correct | Percentage correct

on testdata on training data
Original Data (12D) 48.73 % 50.75 %
40.19 % 51.88 %
Transformed to 2D 46.47 % 47.50 %
54.62 % 52.00 %
Transformed to 8D 44.43 % 45.12 %
57.07 % 53.88 %

Table 2. Test results of classification of 8 vowel data clusters projected from 12 dimensions to
2D and 3D.

4 Paradox tentatively explained.

We have a number of explanations for the observed phenomena.

It is reasonable to suppose that the clusters are reasonably well approximated by gaussian
distributions in dimension 12. The trajectories are highly autocorrelated, as can be seen by
eye in Figures 1 and 2 but ignoring this consideration, the points appear to be rasonably
well described by gaussian clusters, and we shall make that assumption in what follows.

First, it is not hard to see that the number of moves taken in order to get convergence
in the case of a linearly separable data set will generally increase with the dimension. The
same can be expected when the sets are two gaussians with some degree of overlap. It
may be therefore that simply running the Neural Net program for longer will decrease the
discrepancy between the 12 dimensional and the 1 dimensional solutions. Experiments show
that this generally appears to be the case.(See table 3.} Second, the existence of local minima
when the data is not linearly separable is easily seen to be a minor problem in the case where
the dimension is low. Cases where the neural net failed to yield any reasonable classification
at all occur in dimension 12. They do not occur in dimension 1. Nor could they: it is easy to
see that the solution hyperplane (a point in dimension 1) must oscillate between the largest,
and smallest of the actual locations of the minimum error locations, with some overlap which
depends on the step size.
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Number of | A4 AF| AA AFE IY UX 1Y UX
iterations | original | transformed | original | transformed
20000 18496 % | 92.63% 7930 % | 8222 %
84.16 % 91.53 % 75.52 % 81.36 %
40 000 88.70 % 91.15 % 76.66 % 81.54 %
88.23 % 92.67 % 7757 % 81.43 %
60 000 87.74 % 92.86 % 67.34 % 81.72 %
89.87 % 92.23 % 79.17 % 81.80 %
100000 | 89.49 % 9282 % 6891 % | 8233%
88.98 % | 9239 % 7882 % | 82.28%

Table 3. The mean percentages correct on testing for different amounts of training for 2 vowel
pairs.
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