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ABSTRACT - This paper describes a word boundary detection system based on recurrent
neural networks. We show that by using a more effective training aigorithm the perfor-
mance of previous research in this area can be matched by a significantly smaller and sim-
pler network. It is then shown that the performance of this network can be further improved
by varying the forward context. For the architecture used in our simulations, empirical
results indicate that the optimal amount of forward context depends on the number of recur-
rent units in the network.

INTRODUCTION

Word boundary detection plays an important role in most continuous speech recognition systems. in a
typical speech recognition system word boundary detection takes place after segmentation and before
word verification, and as such directly determines the amount of processing required by higher fevels.

Word identification in continuous speech is complicated by the fact that coarticulation or phonetic/pho-
nological recoding takes place at word boundaries. For word boundaries to be recognised properly
these encoding rules have to known and applied to the input in real-time. The advantage of using neu-
ral networks for this task is that recurrent networks can use certain neurons to store short-term context
information, and can automatically learn these phonetic decoding rules. Recurrent networks aiso have
the capability of recognizing and adapting to different speakers (Robinson and Fallside, 1991).

Allen & Kamm (1990) have used a partially recurrent network to locate word boundaries and to recog-
nize words from phoneme sequences. Their network, whose architecture is shown below in figure 1,
achieved 87.5% correct word boundary detection on a stream of phonemes from the DARPA Acoustic-
Phonetic speech corpus (TIMIT).
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Figure 1. Allen & Kamm Network Architecture.
ARCHITECTURE ANALYSIS
In their architecture Allen & Kamm (1990) combine two weli-known methods of recognizing time
sequences. The first is that of time-delay neural networks which use a tapped delay line to turn the time

sequence into a spatial pattern (Elman and Zipser, 1988; Kohonen, 1989). This is done at the input
where the inputs for time 1, t+7 and t+2 are presented in paraliel to the network. The second concept is
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that of partially recurrent networks, often referred to as Jordan (1989) or Elman (1990} networks. This
method uses decaying state or context units, which function as a short-term memory and enables the
network to remember events from the recent past. Referring to figure 1, the output of each state unit is
calculated from a weighted sum of the output of the hidden units and the previous value of the state
units. By combining these two methods, the network can base present decisions on phonemes that
have been presented to it in the past (backward context) and the next two phonemes that are forth-
coming (the forward context of t+7 and t+2).

Allen & Kamm (1990) used several implementation specific additions to the standard back-propagation
algorithm. The end of the phoneme sequence was padded with codes representing silence, and the
state unit activations were reset to zero at the end of each sentence.

ARCHITECTURE USED IN EXPERIMENTS

The architecture used in our experiments is shown below in figure 2. It can be classified as a two-layer
partially recurrent network, ::nd is a simplified version of the Eiman (1990) network which has the hid-
den layer removed. Robinson and Fallside (1991) have named it a recurrent error propagation network
and have applied this network to the problem of phoneme recognition.
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Figure 2. The Error Propagation Network.

In figure 2 the context units are represented by the C(t) neurons. During normal operation the input
vector at time t are applied to nodes /(1), and during the feedforward pass values are produced at both
the output nodes O(f+1) and the context units C(t+7). The values of the context units are then copied
back to the input layer C(t) for use as input in the following time period.

Compared to the architecture in figure 1, this network

* has no hidden units
* has no tapped delay line and only the input at time tis applied to the inputs at any point in time

» the value of the context units do not decay with time; the context nodes in the input layer are pins
and those in the second layer are standard neurons

The majority of the simulations were run using 50 context units. In this configuration the network con-
tains 5561 weights, which is 32% of the weights used in figure 1.

PROCEDURE

Inorder to compare results with that obtained by Allen & Kamm (1990), as far as was possible to deter-
mine the same data has been used. The training set consisted of 5 utterances of each of 50 sentences
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(spoken by different talkers). The testing set consisted of another utterance of each of the 50 sen-
tences. The accuracy of the word boundary detection was determined by the percentage of correct
outputs. The two criteria used by Allen & Kamm (1990) i.e. the percentage of word boundaries
detected correctly and the false alarm rate are also used for comparisons.

TRAINING ALGORITHM

Several training algorithms exist for training partially recurrent neural networks, but for non-trivial tasks
with large training sets the back-propagation through time (BTT) or unfolding in time (Minsky and Pap-
ert, 1969), (Werbos, 1990) is usually used. This method is computationally efficient and does not use
any approximations in following the gradient. For an application where the time information is spread
over Tinput patterns, the algorithm simply duplicates the network T times - which results in a feedfor-
ward network which can be trained by a variation of the standard backpropagation algorithm.

In our simulations the standard BTT algorithm was used. However, the standard quadratic cost func-
tion was replaced by the entropic cost function (Solla et al. 1988). The entropy cost function has previ-
ously been shown (Denker et al., 1988) to solve some problems that cannot be solved using the
quadratic cost function. Our simulations have shown that for the problem of boundary detection signifi-
cantly better results are achieved using this cost function.

The second modification to the standard BTT algorithm was to add the Jacobs (1988) Delta-Bar-Delta
learning rate adaptation heuristic. In our application this heuristic not only increased convergence by
approximately an order of magnitude, but also proved to be efficient in avoiding local minima. In sev-
eral cases training converged where without the heuristic the BTT algorithm could make no further
progress.

RESULTS AND DISCUSSION

In the architecture as is shown in figure 2 the only parameter that can be modified is the number of
context units N.. However, if the network is implemented and trained in this manner the network has no
forward context to base it's decisions on. The context units can be used to store backward context, but
for the problem of word boundary detection both contexts are equally important.

This problem is solved by simply delaying the target pattern for the classification output O(t+1) by a
variable number of time steps. If e.g. the delay is one, the network is effectively recognizing the begin-
ning of words, and not the ends. This classification delay of T4 provides the network with exactly Ty
steps of forward context. However, in order to use this information efficiently it must be extracted and
stored until the classification is eventually made. There are thus two variables to explore, and our sim-
ulations have been targeted towards obtaining the importance of and interaction between N, and T4

Figure 3. Entropic error during training for N=1,30,50,70.

If the classification delay T, is kept constant and the number of context units increased, the perform-
ance increases as would be expected. In figure 3 the entropic error is shown during training for 4 differ-
ent values of N, for the case where Tyis 1.
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The corresponding performance curve is shown in figure 4. The speed with which all networks, includ-
ing the one with only one context unit, gets 80% of the training vectors correct seems remarkable but is
because the average word contains four phonemes. The gradient decent algorithm rapidly detects that
the network can get 80% of the outputs correct by simply keeping the output permanently low. All net-
works then enter a plateau for about 50 epochs until criteria for boundary detection are gradually
extracted

Figure 4. Performance during training for N=1,30,50,70.

From figure 4 is seems that the performance can be increased by simply increasing the number of con-
text units. However, this increase is performance is less than linear compared to the increase in con-
text units, while the increase in the computational load is quadratic.

For studying the effect of the time delay parameter T, only the network with 50 context units were
used. The changes in performance for T,ranging from 0 to 11 are shown in figure 5. As expected, the
performance increases initially and then decreases as Tyis increased. The decrease in performance at
epoch 3 would probably disappear if the simulation were run several times with different starting points.

Figure 5. Performance for N;=50 and varying T4

Due to the fact that the network is trained on 5 pronounciations of the 50 sentences, the generalization
to the 6th version of the sentence in the test set was good, performance was nearly always within 1%
of that obtained during training. In fact, the best training performance of 99.33% was obtained using a
network with N=100 and T#7. On the test set, a performance of 98.49% was obtained, which corre-
sponds to 98.2% correct word boundary detection and a false alarm rate of 0.31%.

The remaining word boundary errors have been examined to see where further improvement is possi-
ble. Most of the errors occur with single phonemes which are a word but which can also appear at the
beginning or end of larger words. A typical example is the phoneme /a/, in the two sequences /a/ /lone/
and /alone/. It is obvious that when humans distinguish between these two sequences higher level
semantic knowledge is used. Without this knowledge there is a maximum to what can be achieved by
any recognition system.
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CONCLUSIONS

This paper has examined the architecture used by previous researchers for the problem of word
boundary detection. It has been demonstrated that their performance can matched by a significantly
smaller and simpler network. This has been achieved through the use of a different cost function and
the addition of a learning rate heuristic to the training algorithm.

The effect of changing the number of context units N, and the time delay T,on performance has been
analysed empirically. It has been shown that the performance increases slowly with increase in N, but
that for every N, value of the there is a range of optimal Ty values.

Analysis of the remaining errors show that the majority require higher leve! information for correct clas-
sification. This indicates that there is an upper bound to the performance achievable in a system which
does not include knowledge of the higher domains. Present research is directed at overcoming this
problem by using neural networks to perform knowledge integration between different domains.
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ABSTRACT - This paper describes a new and effective mouth locating method to locate auto-
matically the mouth shape in a human head with shoulder image. This work forms part of our
research aimed at to improving the quality of image compression for very low bit rate videotele-
phony where the motion of the mouth should correspond exactly to what is being uttered, and is
not excessively smoothed by any more general purpose data compression method.The paper
outlines how we intend to integrate phonetic information with the mouth shape and motion.

INTRODUCTION

Itis of current interest in speech and image processing to focus on the developing of videophone and video-
conference systems operating over very low bit rate channel (Whybray, 1890). Compared to other video util-
ities, videophone and videoconference are intended primarily for person-to-person or group-to-group
audiovisual communications. It is desirable to operate these at low data rates, ideally af the 64 kbits/s rate
offered by a single ISDN channel. Existing video coders operating at this rate can exhibit very poor perfor-
mance where there is some degree of motion. Accordingly, se-called ‘intelligent’ image coding (Kaneko,
1991) has recently come in for a great deal of attention for future videophone and videoconference services.
Compared to conventionai coding techniques, which were designed to transmit the waveform signals, intelli-
gent image coding methods utilize knowledge about the shape and structure of objects and images, and to
some extent handle the meaning or content of visual information (Aizawa, 1987, Welsh,1990, Walden et al.,

1977).

There exists much mutual information between the acoustic speech signat (speech) and the ‘visual’ speech
signal {(mouth movement). In normal speech perception, acoustic speech is reinforced to some degree by
observation of the speaker’s mouth {Massaro, 1987). Visual speech signals are used in lipreading; a com-
plementary process is to use parameters derived from acoustic speech signals to drive an image of mouth
movement. Such a process would provide intelligent enhancement of visual image compression methods
and provide the basis for image animation by intelligent coding. Difierent mouth dimensions and motion
(including tongue and teeth position) correspond to different speech utterances. For example, vowels in
English differ primarily in terms of the visible tongue height and tongue advancement. Walden (1977) has
described an experiment in which all the English consonants were divided into 9 visually discriminable cate-
gories, which provide the basis of any technique for speech-enhanced image coding.

To generate mouth movement from speech, as is required in inteligent video coding, a crucial requirement is
an automatic and accurate mouth locating method. The method we give here can meet this demand. Mouth
location from a head and shoulders image is most conveniently performed in two similar steps: first, the loca-
tion of the head, and secondly, location of the mouth, using data derived from the head boundary.

Two major processes are undergone in both of these two steps. In the first process, by using an active con-
tour model, called ‘snake’ (Kass, 1988; Waite & Welsh, 1990), which originates from the way the contour
changes its shape), we can derive a shape which has a high probability of being a head or mouth contour.
The snake achieves this by means of minimizing three defined ‘energy’ measures: the image energy, the
elastic energy due to snake’s stretching, and another elastic energy due to snake’s bending. Since the
snake computation is a local energy minimizing process, its resuit may be a head/mouth shape or not. At
this stage we introduce a trained multi-layer perceptron net as a pattern recognizer o determine the validity
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