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ABSTRACT - The development and performance of a Time-Delay Neural Network
(TDNN) and a Fully interconnected Neural Network (FINN) is compared for
continuous speech, speaker-independent recognition of voiced stops and
unvoiced fricatives from the DARPA TIMIT speech database. The results
conclusively show that the TDNN is the preferred network for phoneme
recognition. A major enhancement of the back-propagation is also included, and it
makes possible the speedy development of large neural networks on general
purpose workstations.

INTRODUCTION

For an unrestricted speech recognition system, it is best io recognise the phonemes at the
lowest level and then build words from the phonemes detected. The main difficulty in phoneme
recognition is the enormous amount of variability that exists in spoken speech. A single
phoneme may differ in duration and distribution of spectral energy depending on the context
that it is in. Phonemes are also affected by the manner of articulation, interspeaker variations,
environmental conditions and the prosodics of the sentence. These factors all combine to
make the phoneme recognition problem very difficult.

One problem is that phonemes spoken in continuous speech tend to blur into each other. This
makes it hard to determine where a phoneme begins and ends leading to alignment difficulties
in phoneme recognition. 1t is important to overcome the phoneme alignment problem to
achieve optimal performance.

Two neural architectures for phoneme recognition have been investigated. First, the Time-
Delay Neural Network (TDNN) was designed in an effort to try and overcome the temporal
alignment problem. By constructing a network that is invariant to time shifts while still keeping
the number of training passes small, it should be possible to recognise phonemes without
having to align them at all. The utterance could just be passed frame by frame through the input
to the network and the phonemes detected as they appear. ’

To compare performarice with the TDNN, a Fully interconnected Neural Network (FINN) was
created with the same dimensions as the TDNN. This network was the standard feed forward
neural network with all nodes on one layer connecied to all nodes on the layer above. Both
were trained and tested on presegmented phonemic sequences.

SPEECH FEATURE EXTRACTION

The DARPA TIMIT database was used to provide the training and testing sets. This database
contains speech from 630 speakers from 8 major dialects of American English. Each speaker
utters 10 sentences. Time-aligned phonetic and word transcriptions provided with the database
ease the extraction of the phonemes wanted for training and testing. The database is divided
up into standard training and testing utterances. Each speaker utters sentences sa1 and sa2 as
well as some more diverse sentences, which differ from speaker to speaker, called gi and sx
sentences. The testing set does not contain any speakers that appear in the training set.

Speech samples in the TIMIT database are 16 bit integers at a sampling rate of 16,000 Hz.
Phonemes were extracted from the database by searching through the phonetic transcription
for the required phonemes and copying the relevant section of the speech waveform data. The
phonemes were extracted inside 166 ms segments of speech data with the onset of a
phoneme at a given distance from the beginning of the segment.
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Features to be used as input to the neural networks were extracted via a 256 point Hamming
window applied at 5 ms intervals across the speech segment. An FFT was performed on each
windowed speech portion giving 30 spectra throughout the segment. The log-magnitude was
taken of each of these and then the spectra was rescaled to a 16 point melscale. Adjacent
spectra were averaged to obtain 15 frames of data where each frame comprised 10 ms of
speech features. Finally, the data was normalised to values between -1 and +1.

For training, ali the voiced stops and unvoiced fricatives were extracted from the si and gx
sentences of TIMIT. These were formed into two training sets, one containing /b/, /d/ and /g/,
and the other /s/, /sh/, /f/ and /th/. The sa sentences were not used as these would give a bias
to the phonemes that they contain (i.e., neither of them contain /b/). Each training set was then
passed through the above procedure to produce input data whose desired output was +1 for
the correct phoneme and -1 for the others. The testing set was extracted and prepared in the
same way from the gi and sx sentences in the test set designated by TIMIT.

The computers used to develop and run the above and following programs were several Sun
SPARCstations. Because -f the large amount of training that had to be performed, different
training and testing runs were often executed on separate machines.

NEURAL NETWORK CONSTRUCTION
Time-Delay Neural Network (TDNN)

The TDNN was the same structure as that used by Waibel, et al (1989). Each set of connections
was made equal to the next set by averaging the weights after each back-propagation update.
This was an attempt to make the network independent of temporal shifts across the input
frames. A bipolar (-1,+1) sigmoid function was employed (Rumelhart, Hinton, Williams, 1986:
Rumslhart, McClelland, 1986).

initially, training time was excessively long so a number of speed-ups over the conventional
back-propagation algorithms were used. The McCleliand error as outlined in Haffner (1989) was
used to remove the iocal minima problems as well as increase training speed when error was
large. This way, the eror is given by

E=-% Zln(4-(y;-dj)2} ,

samplag | |

where E is the total error, | is an index of output units, y; is the actual output from the network and
d;is the desired output.

Dynamic epsilon adjustment was also used where the value of epsilon was adjusted for each
node depending on the delta values of the weights feeding into it (Haffner, 1989). Thus, the
epsiton value for alf weights entering node i on a given layer is caiculated by

where e is the global value of epsilon, w is a weighting value (usually 1) and j is an index of nodes
in the layer below.

The number of samples passed through the network between weight adjustments was also

varied. One option was to gradually increase this number but it was found that the TDNN trained
best with 3 samples presented between weight updates.

215



Significant improvement in the rate of convergence was achieved by calculating the momentum
term as an accumulation of the hack-propagation passes. This way each weight derivative was
added to an array which was used when updating weights and, after updating weights, the value
of the sum was multiplied by a momentum factor rather than clearing all past values. Further
back-propagation passes were then added to this value so that previous passes still had some
diminishing effect on later ones. This increased the convergence rate by about one order of
magnitude compared to the conventional momentum caiculation (Rumeihart, 1986).

Staged learning strategies were also tried. As described in Waibel (1989), this invoived training
the network on only a few training samples, and then gradually increasing the number of
samples presented to the network. The motivation was that the initial few samples should
quickly "teach” the network the basic pattern to recognise and then fine tuning can be done
later at a faster rate. However, in these simulations, it was found that the staged learning makes
the network significantly "over-learn" portions of the training sets and that it performed
significantly better when all data was presented at once.

The training algorithm was given a threshold of error. If the greatest error at an output node for a
particular training sample was below this value, then the back-propagation pass was not
performed for a number of epochs proportional to the difference between error and the
threshold value. This technigue decreased the amount of time reguired to complete one
epoch.

The error threshold could also be varied as the network trained. This would aliow the network to
complete the initial iterations faster when it is training those samples that have large error.
However, this method also resulied in over-learning. The neiwork most likely learned the more
difficult training samples and ignored the important clues found in the samples that were mostly
the same. The network performed best when a low, fixed error threshold was used.

Finally, the back-propagation routine was adjusted so that those oulput nodes with very small
error compared to the others were taken to have zero error. This allowed many of the
multiplications 1o be skipped in back-propagation thus speeding up the algorithm but also
decreasing performance somewhat.

In summary, measures taken for network speed-ups were:

o use of the McClelland error
« dynamic epsilon adjustment
e accumulating momsntum

e ignoring trained samples

Fully interconnected Neural Network (FINN)

The same speed-up techniques used in TDNN training strategy could also be used for the FINN.
However, the FINN was much faster to train so only a few of them were used, and where:

e use of McClelland error
e ignoring irained samples

Normal momentum was again not used as this tended to make it unstable. Accumulating
momentum increased the speed of training but it also decreased perfiormance so it was not
used either.

TRAINING AND TESTING

Alt voiced stops (/b/, /d/, /g/) were extracted from the si and sx sentences in the TIMIT training
and testing sets. The unvoiced fricatives {/s/, /stV, A/, Ah/) were also exiracted from the same
sentences. Because of the large number of unvoiced fricatives in the training sentences, only
5000 were actually used. Table 1 shows the number of phonemes in each set. The training
sets were extracted in random order to prevent biasing.
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Due to the averaging performed, the TDNN took much longer to train than the FINN. With more
that 1000 samples, the TDNN would not converge for the training set even after one week of
training. After 40,000 epachs, which was the limit set for any stage of the training, the average
squared ervor of the network was still fairly high. However, for the FINN, the network trains much
faster. After less than 100 epochs of training with the full 5804 sample of the voiced stops
training set, the average squared error had converged to less than 0.05, which was the limit set
for training termination. For comparison, see Figures 1 and 2 which compare the training curves
of the TDNN and FINN respectively. Note that the scale is different in the two graphs.

COMPARISON OF RECOGNITION PERFORMANCE

Both the TDNN and FINN tended 1o overlearn the training set after a lot of training. The
recognition of the aligned testing sets would rise fairly quickly, and then fall gradually as more
training was performed.

The performance of the developed networks was first tested for correctly aligned phonemic
data. Using the TDNN, the bast average recognition for the voiced stops was 87.88%, while for
the unvoiced fricalives it reached 89.85%. Lising the FINN, the recognition reached 89.08% for
the voiced siops and 80.06% for the unvoiced fricatives. Thus, for aligned testing data, the
FINN outperforms the TDNN. This is due to the ability of the FINN to converge for the training
set while the TDNN must be stopped early. The difference in recognition, however, is small.

To test the sensltivity of the networks to misaligned data, the testing sets were presented to the
networks with different offsets of the phonemes from the position used during training. It was
this test that revealed the most significant difference in performance between the two networks.
As can be seen in Figure 3, in the case of voiced siops, the recognition performance of the
FINN dropped off much faster than that of the TDNN. Offseats of up to 2 frames (20 ms) on sither
side of the training position did not greatly affect the recognition performance of the TDNN,
while the FINN's performance was significantly degraded. For offsets greater than 2 frames, the
TDNN performed significantly better than the FINN.

in the case of unvoiced fricatives, the TDNN performed better than the FINN for increased
amounts of offsel, as shown in Figure 4. The difference in performance was much greater for
positive ofisets. Reduced degradation with negative offset for the FINN may be attributed 1o the
difference in acoustic characteristics between stops and fricatives. The reduced length of stops
compared to fricatives, the dynamic naiure of stops (closure + burst), and the fact that the identi-
ty of stops is provided by its neighbouring phonemes, are all factors that would make stops more
sensitive to offset and hence harder to recognize than other sounds (Denes, Pinson, 1963).

CONCLUSION

This paper shows a comparison between the Time-Delay and the Fully interconnected Neural
Network for continuous speech, speaker-independent phoneme recognition. Voiced stops
and unvoiced fricatives from the DARPA TIMIT speech database were used for training and
recognition. The TDNN was slower in training than the FINN. While the FINN could learn the
training data almost perfectly, the TDNN would not converge. However, both networks
achieved high recognition rates for correctly aligned phonemes. The TDNN was able to
generalize with the training data while not learning the poorer phoneme examples to the same
extent that the FINN was able. Evidence of the existence of *harder" examples of phonemes
was shown by the FINN which tended to decrease in periormance as average error decreased to
very low values.

Significant differences in performance appeared when the phonemes became misaligned. The
TONN showed much greater performance although this also decreased with increased
misalignment. Employing a phonemic segmenter with the FINN would still not make this network
significantly better than the TDNN. Despite the increased learning time, the comparable
performance of the networks for correctly aligned data and, more impontantly, the robustness of
TDNN to misaligned data make it the preferred configuration for recognition of phonemes in
continuous speech.
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Phoneme ?rainim set ?esting sel
b/ 2181 886
1d/ 2432 1245
g/ 1191 775

Total 5804 28886
/s/ 2947 2172
/sh/ 611 460
itk 1061 811
/th/ 381 259
Total 5000 3802

Table 1. Distribution of phonemes in training and testing sets.
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Figure 2. FINN Training Curves.

218



8

90:
80'-
70-
80
50
40 -
30':
20 AT T

0 -8 -6 4 2 0 2 4 6 8 10
Offset Frames

Recognitlon of Test Dats (%)

Figure 3. Recognition performance with misaligned testing data: voiced stops.
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Figure 4. Recognition performance with misaligned testing data: unvoiced fricatives.
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