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ABSTRACT - In this paper, we describe the speech recognition that introduces the modular
organizations based on Multiple Hopfield Neural Network (MHNN). MHNN is composed of
several Hopfield Networks that are connected to each other. Each network owns the individual
energy function but when connected, the total energy of the whole network can be minimized
because MHNN interacts between the networks. Our recognition architecture has two phases.
In the first phase, two mapping-type networks extract features from a spectrum data and a
pitch data as the modular organization's inputs. In the second phase, MHNN recognizes the
speech signal by the interactions between the networks. We perform Japanese name
recoghition by using MHNN.

INTRODUCTION

Recently, neural networks for the speech recognition have been studied in the hope of achieving
human-like performance. Especially, Kohonen Network (Kohonen, 1988) and Time Delay Neural
Network (Waibel, Hanzawa, Hinton, Shikano & Lang, 1889) obtain good performance for the speech
recognition. However, their networks do not achieve a human-like parallel processing. The reason of
this is that they process only one kind of input such as a cepstrum, a bank filter, and so on. Because
the speech signal includes the information of a spectrum, a pitch, and time progress, the speech
recognition is difficult to treat such as the complex information. The problem of speech recognition is
that we treat only one kind of data instead of the compiex information.

It is assumed that biological systems consist of several modular organizations and their interactions act
effectively on the dynamical behavior of the total system. We suppose that each modular organization
acts feature extraction of spectrum, accent, and so on at lower order in the brain. At higher order, man
understands the words and the contexts from the obtained features at lower order. The expected
advantage for such a modular organization is the mutual coupling of some simple modules at large
scale architecture.

The methodology for integrating some modular organizations, therefore, is important to construct
more complex and higher order neural systems. Some recent modular organizations can be interpreted
as the integrated systems through this attempt. For instance, such systems are Adaptive Resonance
Theory (ART) (Carpenter & Grossberg, 1988), Bidirectional Associative Memory (BAM) (Kosko, 1988),
Cross-Coupled Hopfield Net (CCHN) (Tsutsumi, 1990), and so on.

Multiple Hopfield Neural Network (MHNN) is composed of several Hopfield Networks (HN) (Hopfield &
Tank, 1988) that are connected to each other. Each network owns the individual energy function but
when connected, the total energy of the whole network can be minimized because MHNN interacts
between HNSs, just like BAM does.

Qur recognition architecture has two phases. In the first phase, two mapping-type neural networks
extract features from a spectrum data and a pitch data respectively. MHNN has two HNs whose inputs
are the mapping-type network's outputs. In the second phase, MHNN recognizes the speech signai
from obtained features at each network.

in the simulation, we perform Japanese name recognition that uttered by a Japanese male speaker.
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MULTIPLE HOPFIELD NEURAL NETWORKS

Fx (n neurons) m Fy ( p neurons)

Figure 1. The architecture of MHNN,
Lyapunov function

MHNN is composed of sevaral HNs that are connected to each other. The architecture of MHNN is
shown in Figure 1. in this paper, we assume that MHNN is composed of two HNs. We denote by M the
n-by-p weight matrix that interconnects two HNs of neurons. One HN Fx has n neurons, and the other
HN Fy has p neurons. The weight m; connects from the ith neuron in Fx to the jth neuron in Fy. A{oa
) and B { §:) are within-network weight matrix of Fx and Fy, respectively. The activation of neuron is
described by a real-valued potential x(s) (the ith neuron in Fx) and y(r) (the jth neuron in Fy). The
neuron transforms this activation into a signal S = S{x) and V; = Vi(y). S and V; can be any monotone-
increasing function: 5.,V > 0. We define ihe following Lyapunov function L for MHNN.
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where b is arbitrary. The time differentiation of the Lyapunov function L given in the equation (1) is
represented as follows:
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The dynamical system x and y are defined by the equation (3) and (4). If M, A, and B are fixed, we can
deduce the following equation:

L<0 (5

Thus the dynamical system by the equation (1) is globally stable, just like BAM does. It is assume that
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MHNN has non-interconnection between Fx and Fy, the equation (3) is the following:
X, = iSk(x,‘)aik ~b, (6)
k=t
Replacing Si(x) = Vi,os = Ta/C: and b = x:/ RCi— I/ Ci, we obtain the following:
Ci,=—x/R+ iTqu +1, (7)

i
k=1

This equation is the same as Hopfield circuit. Therefore, MHNN is that each HN owns the individual
energy function but when connected, the total energy of the whole network can be minimized because
MHNN interacts between networks.

Row & column problem

To confirm the efficiency, we perform a simutation calied "Row & Column Problem.” This problem must
be only one unit "1 output in each row and each column in the n-by-n square, all other unit being "0"
output. HN1 is defined so that the energy function such as only one "1" output is in each row and HN2
is defined in each column.
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The total energy function E is defined the following:
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(b) The final state of networks
Figure 2. The typical convergence of "Row & Column Problem".

The last term is zero if and only if the final state of HN1 corresponds to the final state of HN2. Figure 2
shows the results of a simulation that illustrates the typical convergence of a state such as an intermediate
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state to a final state. Each network behaves as the individual energy function to be minimized. After a
while, the total energy of the whole network is minimized because MHNN interacts between HN1 and
HN2. Finally, the final state of HN1 corresponds to the final state of HN2.

JAPANESE NAME RECOGNITION
Recognition architecture

We perform Japanese name recognition that uttered by a Japanese male speaker. We use the following
five Japanese names; "okue”, "kamei", “tamio", "kikuta®, and "matuo”. 256-point FFT with Hanning
window is computed every 10 ms from the input words sampled at 8 KHz. The training data has 25
words (the number of each word is 5) and the testing data has also 25 words.

Our recognition architecture has two mapping-type neural networks and one MHNN. The proposed
network is shown in Figure 3. The mapping-type networks use the foliowing two types; Recurrent
Neural Network (RNN) (Fukuda & Matsumoto, 1991) and Non-recurrent Neural Network (NNN). NNN
and RNN extract features from a spectrum data and a pitch data respectively. The spectrum data
represents phoneme information at every fime and the pitch data represents a relationship between
phoneme and time progress. We use RNN for the feature extraction from the pitch data because RNN
has advantage of treating the temporal sequences independent of time length. Each network classifies
the inputs data into vowels, "a", “i", "u", "e", “0"; consonants, "k", "t", "m", and nothing as "N". MHNN
has two HNSs that are calied HN1 and HN2. The inputs of HN1 and HN2 are the outputs of NNN and
RNN respectively. HN has 8-by-time length units. Each energy function of HN is defined so that the only
one "1 output is in the each phoneme column. Furthermore, the energy function of HN2 is defined
S0 that the neighboring row units that belong to the same class intensify each other. Because the
pitch data has the relationship between phoneme and time progress, the energy function of HN2
must have such relationship. if the final state of HN1 corresponds to the final states of HN2, MHNN can
recognize words from the obtained features at each network.

MHNN
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Figure 3. The proposed network.

In the simulation, the spectrum data is 16 order melscale spectrum coefficients and the pitch data is 16
order cepstrum coefficients from the 43rd point to the 58th point. RNN consists of 16 input units, 8
hidden units, 9 output units and 8 context units. NNN consists of 16 input units, 8 hidden units, and 9
output units. RNN and NNN are trained by Back Propagation algorithm. For comparison, NNN whose
input is the spectrum data and the pitch data without MHNN is also trained to perform the same task.
This network is called CompNNN, consists of 32 input units, 16 hidden units, and 9 output units.

The results of simulation

Figure 4 shows the change of error during a typical learning. Ordinate in the figure indicates the mean
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squared error of output layer, averaged over the output units. In the figure, the solid line and the dot
line show the learning in NNN whose input is the spectrum and CompNNN whose input is the spectrum
and the pitch. As it is clear from the figure, the final error of CompNNN is the same as NNN though
CompNNN has many parameters and inputs data. Because the architecture of NNN is more simple
than CompNNN, the learning time of NNN is faster than CompNNN in the absolute time. We suppose
that the modular organization needs to act feature extraction respectively for several information of
speech signai .
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Figure 4. The change of error during typical learning.

Figure 5 shows the resuits of a simulation that illustrates the typicai convergence of a state such as an
initial state to a final state with MHNN when "matuo” was uttered. Figure 5 (a) shows the initial state of
HN1 and HN2. As it is clear from the figure, HN1 and HN2 recognize the phoneme incorrectly at the
several points. Figure 5 (b), at the final state, shows that MHNN interacts between HN1 and HN2. HN1
and HN2 recognize correctly at the point of incorrect recognition in the figure (a). Table 1 shows the
results of the word recognition experiments with testing data. MHNN obtains better performance than
NNN and CompNNN.
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(b) The final state of networks
Figure 5. The word recognition with MHNN when "matuo” was uttered.

Table 1. The result of the Japanese name recognition.

network NNN CompNNN MHNN
input data spectrum i spectrum, pitch { spectrum, pitch
correct recognitionj| 18/25 20/25 22/25

Generally, the input of spectrum data correctly recognizes vowels and consonants that appear in the
early time. The input of pitch data recognizes correctly consonants that appear in the intermediate
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time. The reason of this is that each data has the different information. The speech recognition system
should be capabile of integrating several information.

CONCLUSIONS

We discussed the approach for the speech recognition that introduces the modular organizations
based on MHNN. After training phase, each network may be the incomplete recognition network
because of trapping the local minimum or less training data. However, we can obtain the better
recognition results by the interactions between their networks, MHNN may be capable of the speech
recognition system integrating each modular organization network, such as the phoneme recognition
network, the context recognition network, and so on. it is shown that the modular organizations based
on MHNN is useful for the speech recognition system.

MHNN has a capability to integrate several information. This is important for the large scale neural
systems because the systems can be composed of some simple modular organizations.
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